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Abstract—In the research field of image processing, mean
squared error (MSE) and peak signal-to-noise ratio (PSNR) are
extensively adopted as the objective visual quality metrics, mainly
because of their simplicity for calculation and optimization. How-
ever, it has been well recognized that these pixel-based difference
measures correlate poorly with the human perception. Inspired by
existing works [1]–[3], in this paper we propose a novel algorithm
which separately evaluates detail losses and additive impairments
for image quality assessment. The detail loss refers to the loss of
useful visual information which affects the content visibility, and
the additive impairment represents the redundant visual infor-
mation whose appearance in the test image will distract viewer’s
attention from the useful contents causing unpleasant viewing
experience. To separate detail losses and additive impairments, a
wavelet-domain decoupling algorithm is developed which can be
used for a host of distortion types. Two HVS characteristics, i.e.,
the contrast sensitivity function and the contrast masking effect,
are taken into account to approximate the HVS sensitivities. We
propose two simple quality measures to correlate detail losses
and additive impairments with visual quality, respectively. Based
on the findings in [3] that observers judge low-quality images in
terms of the ability to interpret the content, the outputs of the
two quality measures are adaptively combined to yield the overall
quality index. By conducting experiments based on five subjec-
tively-rated image databases, we demonstrate that the proposed
metric has a better or similar performance in matching subjective
ratings when compared with the state-of-the-art image quality
metrics.

Index Terms—Contrast masking, contrast sensitivity function,
decoupling algorithm, human visual system.

I. INTRODUCTION

R ESEARCH works on visual quality assessment aim
at deriving an objective visual quality metric which is

consistent with the human perception. A successful objec-
tive visual quality metric can release humans from laborious
works, such as visual quality monitoring in communication,
visual system performance evaluation and vision-related tests
in manufacturing environment, etc. Furthermore, in many

Manuscript received October 05, 2010; revised February 15, 2011 and April
21, 2011; accepted April 25, 2011. Date of publication May 10, 2011; date of
current version September 16, 2011. The associate editor coordinating the re-
view of this manuscript and approving it for publication was Prof. James E.
Fowler.

The authors are with the Department of Electronic Engineering, The Chi-
nese University of Hong Kong, Hong Kong (e-mail: snli@ee.cuhk.edu.hk;
fzhang@ee.cuhk.edu.hk; lma@ee.cuhk.edu.hk; knngan@ee.cuhk.edu.hk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TMM.2011.2152382

image and video processing applications, such as compression,
watermarking, restoration, color contrast enhancement, etc.,
it can be used online to boost algorithm performance, or to
reduce computational complexity, e.g., in computer graphic
illumination rendering [4].

However, there are many challenges in designing an accurate
objective quality metric. Firstly, visual signals have various con-
tents leading to different distortion masking levels. Secondly,
before entering the eyes, the visual signals passed through nu-
merous processing stages, e.g., recording, compression, trans-
mission, post-processing, display, etc., each of which will in-
troduce different types of artifacts. The large number of distor-
tion types and various viewing environments make the design of
a general-purpose visual quality metric difficult, if not impos-
sible. Thirdly, after entering the eyes, the visual signals are de-
composed and interpreted by the Human Visual System (HVS).
Physiological knowledge on the HVS is limited to its front end.
A complete understanding of the HVS and its mathematical
modeling will not be realized in the near future due to the great
complexity. To make matters worse, visual quality judgement
is viewer dependent, related to unpredictable factors like the
viewer’s interests, expectations, quality experience, etc. There-
fore, it is impossible for an objective quality metric to match
individual subjective ratings unconditionally. Instead, objective
metric score is expected to be consistent with an average sub-
jective score derived from dozens of subjects. The viewing con-
ditions are standardized and the distortion types used to validate
the metrics are those frequently encountered in the real practical
applications.

From the viewpoint of inputs, visual quality metrics can be
classified into media-layer, bitstream-layer, and packet-layer
metrics. Bitstream-layer and packet-layer metrics are beyond
the scope of this paper. For media-layer metrics, plenty of
design approaches have been investigated in the literature. For
example, pixel-based metrics, such as MSE/SNR/PSNR, etc.,
correlate visual quality with pixel value differences. They are
easy to calculate and optimize, but do not correlate well with the
human perception. Metrics, like those in [5]–[8], etc., utilize the
prior knowledge on the distortion characteristics. For example,
blockiness often occurs along the block boundaries; blurring
affects edges most conspicuously; ringing appears prominently
in the smooth regions around the edges, etc. A few metrics, as
described in [9] and [10], explore the statistical characteristics
of natural images to predict visual quality. Natural images pos-
sess unique statistical characteristics which will be disturbed
by distortions. Deviations from the expected natural statistics
are used to quantify the distortion intensity. A large number of
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quality metrics are based on models of the low-level processing
of the HVS. For example, vision researches suggest that in the
early visual pathway, there exist several octave spacing radial
frequency channels, each of which is further tuned by orien-
tations. A host of spatial transforms are employed by quality
metrics to simulate this HVS mechanism, e.g., the cortex
transform used in Winkler’s Perceptual Distortion Metric [11],
the steerable pyramid transform used in the Teo and Heeger
model [12], wavelet transform used in Lai’s metric [13] and the
discrete cosine transform used in Watson’s DCTune [14], etc.
Human perception is sensitive to luminance contrast rather than
the luminance intensity. Based on this well-known fact, Peli
[15] defines a local band limited contrast measure for complex
images which assigns a local contrast at every point of an image
and at every frequency channel. Similar contrast calculations
have been adopted by Daly’s Visible Different Predictor [16]
and Lubin’s model [17]. Contrast sensitivity function (CSF)
and spatial masking are also frequently used to model the HVS
processing. They are utilized by the proposed method and will
be elaborated in Section III. Low-level HVS models are often
criticized, e.g., they may be unsuitable for supra-threshold con-
trast measure and show a lack of geometric meaning. However,
a recent work [18] analytically and experimentally proves that
the traditional divisive normalization-based models actually are
not subject to the above criticism.

High-level HVS processing mechanism (corresponding to the
late visual pathway, e.g., after the primary visual cortex) still re-
mains mysterious. Therefore, many recent IQMs simply make
use of common knowledge or assumption about the high-level
HVS characteristics to guide quality prediction. For example,
structural information is critical for cognitive understanding;
therefore, the authors of [19] make the assumption that the struc-
ture distortion is a good representative of visual quality varia-
tion. They proposed a metric which distinguishes structure dis-
tortions from luminance and contrast distortions. This assump-
tion has been well accepted and applied in visual quality as-
sessment [20]–[22]. Recently, authors of [23] proposed to use
singular vectors out of singular value decomposition (SVD) for
quantifying the structural information. Another well-known as-
sumption made by the authors of the visual information fidelity
criterion (VIF) [24] is that the HVS correlates visual quality
with the mutual information between the reference and test im-
ages. The mutual information resembles the amount of useful
information that can be extracted from the test image. Although
VIF seems to be quite different from SSIM in terms of the funda-
mental assumption, down to the implementation, the two IQMs
share similarities, as analyzed in [25]. In [2], the authors advo-
cate such an assumption that the HVS adapts the quality pre-
diction strategy to the distortion intensity. More precisely, for
high-quality images, the HVS attempts to look for distortions
in the presence of the image, while for low-quality images, the
HVS attempts to look for image content in the presence of the
distortions. Two quality measures were proposed with one more
suitable for measuring high-quality images and the other for
low-quality images.

In this paper, we propose a full-reference image quality
metric. Instead of treating the distortions in the test image
homogeneously, they are decoupled into two groups: additive

impairments and detail losses, which we believe correlate
with visual quality in different ways. The proposed method is
inspired by existing works [1]–[3]. In [1], the authors proposed
to separate distortions into linear frequency distortions and
additive noise degradations, which in essence can be interpreted
as the two terms, i.e., detail losses and additive impairments,
used in this paper. However, the decoupling algorithm in [1]
was specifically designed for halftoning artifacts. In this paper,
a general-purpose decoupling algorithm has been developed
which is able to handle a host of distortion types. Furthermore,
two quality measures were proposed in [1], but how to combine
their outputs to yield an overall quality measure is left as an
open problem. In this paper, we propose two simple quality
measures, i.e., the detail loss measure and the additive impair-
ment measure, and also develop an adaptive method to combine
them together. The adaptive combination method is based on
the findings in [3] that observers intend to judge low-quality
images in terms of the content visibility. As mentioned above,
this is similar to the assumption made in [2] that for low-quality
images, the HVS attempts to look for image content in the
presence of the distortions. In comparison to [2], our method
explicitly extracts the detail loss to more accurately quantify
the visibility of the image content, while their method achieves
this by analyzing changes in local statistics (standard deviation,
skewness, and kurtosis) of the log-Gabor subband coefficients.

The rest of this paper is organized as follow. The motiva-
tion of the proposed metric is further explained in Section II.
Section III presents detailed implementation of the proposed
metric. Experimental results are provided and discussed in
Section IV. Section V contains the concluding remarks.

II. MOTIVATION

Full-reference image quality metrics take both the test image
and the original image as inputs. As shown in Fig. 1(a),

differences between and can be treated as the distortions.
Instead of taking the pixel differences, HVS-model based met-
rics simulate the HVS responses to and and measure the re-
sponse differences to evaluate visual quality. The original image
can serve as the masking signal to adjust the distortions, consid-
ering the fact that distortions will be less visible in texture areas
than in smooth areas. However, artifacts usually can make the
test image less textured compared to the original. Therefore, uti-
lizing the original image as the masker is sometimes problem-
atic, especially for low-quality images where the contrasts of
the textures or edges have been significantly reduced. To solve
this problem, several visual quality metrics [17], [26] employ
mutual masking, in which only areas that are highly textured in
both and produce a significant masking effect.

Instead of treating the distortions indiscriminately, in this
paper, we propose a novel image quality metric which separates
the distortions into two parts, namely detail losses and additive
impairments. As shown in Fig. 1(b), detail losses and additive
impairments can be decoupled from the difference image. As its
name implies, detail losses refer to the loss of the useful visual
information in the test image. Most distortion types cause detail
losses especially when their intensities are strong. For example
in Fig. 1, the test image suffers from detail losses caused by
JPEG compression. On the other hand, additive impairments
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Fig. 1. Example of (a) separating the test image into the original image and the difference image (b) separating the difference image into the detail loss image and
the additive impairment image (c) separating the test image into the restored image and the additive impairment image.

refer to the redundant visual information which does not exist
in the original but appears in the test image only. For instance
in Fig. 1, the additive impairments in the JPEG coded image
appear as blocky artifacts. Various additive patterns associated
with different distortion types will be illustrated in Section III.
In the proposed metric, we separate the test image into a
restored image and an additive impairment image, as shown
in Fig. 1(c). The restored image exhibits the same amount of
detail losses as the test image but is additive impairment free.
It can be used as the masker to mask the additive impairments,
providing a good solution to the above-mentioned masking
problem. Detail losses can be generated by subtracting the
restored image from the original image.

Besides the merits relating to visual masking, the necessity of
decoupling detail losses and additive impairments also comes
from the assumption that they correlate with the visual quality
in different ways. The detail loss influences the content visi-
bility of the test image. The upper bound of its amount is de-
termined by the original image. Additive impairments on the
other hand are less related to the original, but their appearances
will distract our attentions from the original contents causing
unpleasant viewing experience. In the proposed metric, we sim-
ulate the HVS responses to the restored and the original image
respectively, calculate their Minkowski summations, e.g., is
the Minkowski sum for the restored image and for the orig-
inal image and use the ratio of to as the quality score ,

to quantify the influence of the detail loss on perceived visual
quality. Different from the majority of image processing algo-
rithms, contrast enhancement does not suppress details but en-
hances them. Our metric can handle this exception and it will be
explained in Section III-A. We also simulate the HVS responses
to the additive impairments and calculate the Minkowski sum-
mation, which is then normalized by the number of pixels to
generate the additive-impairments-related quality score .

To yield the overall quality index, we propose an adap-
tive method to combine and together. As mentioned in
Section I, the underlying assumption for this adaptive combi-
nation is adopted from [2] and [3], that is, as the image quality
degrades, the HVS becomes more inclined to predict quality
according to the content visibility. Since it is the detail loss
score that determines the content visibility, according to this
assumption, it should play a more important role in the final
quality index as the distortion intensity increases. Detailed
information will be given in Section III-C.

III. PROPOSED METHOD

The proposed image quality metric works with luminance
only. Color inputs will be converted to gray scale before further
analysis. The current algorithm is extended from our previous
work [27]. Its framework is illustrated in Fig. 2, which consists
of three major sections: 1) the decoupling algorithm, 2) the HVS
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Fig. 2. Framework of the proposed full-reference image quality metric.

processing simulation, and 3) the calculation and adaptive com-
bination of the two quality measures. Details on each section
will be given below.

A. Decoupling Additive Impairments and Useful
Image Contents

As illustrated in Fig. 1(c), we intend to decouple the restored
image and the additive impairment image from the test
image. The restored image is supposed to exhibit the same
amount of detail losses as the test image but is additive impair-
ment free, while the additive impairment image contains no
original image content but only additive noises. In the litera-
tures, a vast number of image restoration algorithms exist for
various applications, e.g., de-noising, de-blocking, de-blurring,
super-resolution, etc. In our metric, we do not apply the existing
algorithms to decouple and , because 1) they were designed
for specific applications and thus difficult to be generalized; 2)
instead of aiming at an image that exhibits the same amount of
detail losses as the test image, the objective of these algorithms
is to recover the original image as perfectly as possible by
compensating the detail losses; and 3) the problem formulation
typically does not have a closed-form solution but requires
iterative optimization, which makes these algorithms time con-
suming. In the proposed full-reference image quality metric,
the availability of the original image enables us to design a
general-purpose and time-efficient algorithm to recover the
useful contents of the test image.

1) Problem Formulation: Each local patch (e.g., 8 8
block) of the restored image is to satisfy the following condi-
tions:

(1)

where is the local position index and the gradient of , i.e.,
, is assumed to be shrinking compared to that of the original

image patch , to take into account the influence of the detail
loss. The mean luminance of , i.e., , is equal to the mean lu-
minance of the test image patch , since intuitively the original
mean luminance cannot be recovered from the test image. The
formulation of is given by the solution of (1):

(2)

To make the restored image exhibit equivalent detail losses as
the test image, we maximize the similarity between and ,
by setting the scale factor :

(3)

In the proposed decoupling algorithm, the similarity between
and is measured by the sum of squared differences to facilitate
its optimization. Thus, (3) is implemented as

(4)

where denotes the norm. From (4), we can get the closed-
form solution for the scale factor :

(5)

where denotes the inner product and is equiva-
lent to . By applying (2) and (5), the restored
image can be constructed patch by patch.

2) Wavelet Domain Solution: Spatial domain solution given
by (2) and (5) has its drawbacks. To illustrate, let us first decom-
pose by

(6)

where 1 indicates the component recon-
structed by the wavelet coefficients of the th subband. By using
(2) and (5), the same scale factor will be assigned to each .
Actually, subbands are distorted unevenly in most cases. There-
fore, it will make more sense to choose a specific for each .

The same decomposition as described in (6) can be applied
to the original image and the test image to derive and ,
respectively. Since the mean luminance of both and

is equal to zero, similar to (2), we have

(7)

Given an orthonormal discrete wavelet transform (DWT), the
following equations hold:

(8)

1
� � � indicates the approximation subband.
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Fig. 3. Subband indexing. Each subband is indexed by a level and an orien-
tation ��� ��. � � �, 3, and 4 denote the vertical, diagonal, and horizontal
subbands, respectively.

where and denote the DWT coefficients of and ,
respectively. From (8), we can get the closed-form solution for
the scale factor :

(9)

Simplification can be made that instead of using a vector of
DWT coefficients, or can be represented by a single
DWT coefficient. In this way, (9) is simplified to the division
of two scalar values. In the following discussion, is used
to index each wavelet subband, as illustrated in Fig. 3 and
is used to index the DWT coefficient position. A four-level
DWT is applied to both the original and the test images, gen-
erating the DWT coefficients and , re-
spectively. Based on the above-mentioned simplification, scale
factors of the high frequency subbands are given by

(10)

where the constant is to avoid dividing by zero. To sat-
isfy as required by (1), the approximation subband of
the restored image is made to equalize that of the test image.
Eventually, the DWT coefficients of the restored image can be
obtained by

otherwise
(11)

where indicates the approximation subband. Since DWT
is a linear operator and the additive impairment image is given
by [as illustrated in Fig. 1(c)], DWT coefficients of

can be calculated by

(12)

3) Special Case—Contrast Enhancement: Contrast enhance-
ment will improve rather than degrade the image quality, as long
as the image contrast is not too high to look natural. If the value
of the scale factor is not bounded, the above decoupling algo-
rithm can handle this special case. However, the constraint on
the value of , i.e., , is necessary, due to the use of
the sum of squared differences (SSD) to measure the similarity

between the restored image and the test image, as given in (4)
and (8). Although it is easy to optimize, the SSD simply mea-
sures the pixel differences to approximate rather than accurately
quantify the structural similarity. Therefore for many artifacts,
e.g., white noises, impulse noises, etc., may result in a
smaller SSD, compared with . However, a smaller SSD
does not always correspond to a higher structural similarity. In
fact, the prior knowledge tells us that except for contrast en-
hancement, the majority of the distortion types should not lead
to . Therefore, instead of relaxing the constraint on the
value of , we develop another method to distinguish contrast
enhancement, as elaborated below.

Each DWT coefficient pair of the original image,
and , is represented by a point in the

angular space, whose angle can be calculated by

(13)

where is the unit step function. of the test image
can be obtained in a similar way. The absolute angle difference
in degrees is given by

(14)

Different from the other distortion types, contrast enhancement
will result in very small . For example as illustrated in
Fig. 4, each blue circle represents a DWT coefficient pair of the
original image, and , with
the corresponding ranging from 44.5 to 45 . The red and
green circles represent the same DWT coefficient pairs of the
test images, and , with the
former belonging to a white noise distorted image and the latter
to a contrast enhanced image. Apparently, contrast enhancement
hardly changes their angles, while white noise does dramati-
cally. We found in more experiments that this observation holds
for other angle ranges besides 44.5 to 45 and for other dis-
tortion types besides white noises. Moreover, the DWT coeffi-
cient pair and used in (13)
can be replaced by other pairs indexed by and

, or and , leading
to similar experimental results.

Based on the above analysis, we calculate . If it is
smaller than a threshold, contrast change is supposed to occur,
in which case no additive impairment exists. This is equivalent
to replacing (11) by

otherwise
(15)

where 1 is experimentally chosen as the threshold, so that con-
trast enhancement can be largely identified and also no percep-
tible additive impairment will be observed in the restored image.
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Fig. 4. Blue circles represent ��� DWT coefficient pairs [���� � � �� �� ��
and ���� � � �� �� ��] of the original image (I16.bmp in the image database
TID), with � ��� �� �� ranging from 44.5 to 45 . The red and green circles
represent the corresponding ��� DWT coefficient pairs [	 ��� � � �� �� �� and
	 ��� � � �� �� ��] of the test images. The red circles belong to a white noise
distorted image (top left corner image of Fig. 5). The green circles belong to a
contrast enhanced image (I16_17_3.bmp of TID).

4) Visualization of the Decoupling Results: Fig. 5 illustrates
the results of the proposed decoupling algorithm, as formulated
by (10), (12), and (15), on five typical distortion types: Gaussian
white noise, JPEG coding, JPEG2000 coding, Gaussian blur,
and wireless transmission error. All test images are from the
image database TID [28], [29]. The restored images and the ad-
ditive impairment images are generated by inverse-transforming
their respective DWT coefficients. To better visualize the addi-
tive patterns with 8-bit representation, pixel values of each ad-
ditive impairment image are linearly projected into the range

. Generally, the decoupling algorithm succeeds in sep-
arating the additive impairments from the useful contents. The
additive impairment images show only the additive noises and
the restored images contain similar detail losses as their respec-
tive distorted images. It should be noted that the contrast of the
additive impairment image for Gaussian blur, which originally
is quite low, has been enhanced by the linear projection.

B. Simulating the HVS Processing

HVS models typically include sequential processing mod-
ules, such as color processing, luminance adaptation, frequency
and orientation channel decomposition, contrast sensitivity
function, contrast masking, etc., to simulate the low-level
HVS processing of the visual inputs. Although anatomy and
neuroscience provide us with detailed physiological knowledge
about the front end of the HVS (optics, retina, LGN, primary
visual cortex, etc.), a thorough understanding of the latter stages
of the visual pathway is still unavailable. Consequently, most
HVS models take into account only the low-level perception
factors evaluated in psychophysical experiments. For the pro-
posed metric, incorporating such a low-level HVS model may
serve as a complement to the assumption of the overarching
principle, i.e., detail losses and additive impairments should be
evaluated separately. Instead of featuring an accurate, usually
time-consuming HVS model, the proposed metric efficiently
utilizes two HVS characteristics, namely contrast sensitivity

function (CSF) and contrast masking, which were found to be
most effective for image quality assessment [30].

1) Contrast Sensitivity Function: Contrast sensitivity is the
reciprocal of the contrast threshold, i.e., the minimum contrast
value for an observer to detect a stimulus. The contrast thresh-
olds are derived from psychovisual experiments using simple
stimuli, like sine-wave gratings or Gabor patches. In these ex-
periments, the stimulus is presented to an observer with its con-
trast gradually increased. The contrast threshold is determined
when the observer is just able to detect the stimulus. The HVS’s
contrast sensitivity was found to depend on the characteristics
of the visual stimulus, e.g., its spatial frequency, orientation, etc.
For still images, the CSF peaks at the middle frequency and
drops with both increasing and decreasing frequencies. Ngan
et al. [31] and Nill [32] showed that the generalized CSF model
can be expressed as

(16)

where , , and are constants and is the spatial frequency
in cycles per degree (cpd) of visual angle. The proposed metric
employs this model with the same parameters setting as in [31]
( , , and ) which leads to the CSF
peaking at 3 cpds subtended at the normal viewing distance of
four times the picture height. According to [34] and [33, Section
2.3.1], the nominal spatial frequency of each DWT level can
be given by

(17)

where is the viewing distance, is the picture height, and
is the cycles per picture height. We set the ratio of to as a
constant of 4 in the following experiments. As in [2], to take into
account the oblique effect, i.e., the HVS is more sensitive to the
horizontal and vertical channels than the diagonal channels, the

in (16) is replaced by ,
where for the vertical and horizontal DWT subbands
and for the diagonal DWT subband. As illustrated
in Fig. 2, the CSF is applied to the original image and the two
decoupled images. It is implemented by multiplying each DWT
subband with its corresponding CSF value derived from (16)
and (17).

2) Contrast Masking: Contrast masking (CM) refers to
the visibility threshold elevation of a target signal caused by
the presence of a masker signal. In psychovisual experiments
for evaluating CM, the target signal was superposed onto the
masker signal and the visibility threshold of the target was
recorded for a variety of maskers. It was found that generally
higher target visibility threshold (stronger masking effect)
will be caused by higher masker contrast and closer similarity
between the target and the masker in spatial frequency, orienta-
tion, phase, etc. In [34], it was discussed that contrast masking
should be computed over a broad range of orientations but
over only a limited range of space and spatial frequencies.
Therefore, we simply use (18) to calculate the CM thresholds:

(18)
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Fig. 5. Results of the proposed decoupling algorithm on five typical distortion types, from top row to bottom row: Gaussian white noise, JPEG coding, JPEG2000
coding, Gaussian blur, and wireless transmission error. From left to right: the test images, the restored images, and the additive impairment images.

where is a 3 3 weighting matrix as shown in Fig. 6,
is the absolute DWT subband of the masker signal, operator

indicates convolution, and is the CM threshold map for
each of the three DWT subbands in scale . The can be used
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Fig. 6. Weighting matrix �.

to alter the slope of the masking function. After taking into ac-
count the CSF, can be chosen as a constant for all frequency
channels [1], [16]. Therefore, as in [26], we set for all
the DWT subbands. In the proposed metric, spatial masking is
implemented after the CSF weighting, as shown in Fig. 2. Since
the restored and additive impairment images are superposed,
one’s presence will affect the visibility of the other. Therefore,
both images serve as the masker to mask the other. Specifically,
we take the absolute value of their CSF-weighted DWT coef-
ficients, subtract from them the corresponding CM thresholds
measured by (18), and clip the resultant negative values to 0.
On the other hand, for the original image, we directly take the
absolute value of its CSF-weighted DWT coefficients as the ap-
proximated HVS responses, without considering the CM effect.

C. Two Quality Measures and Their Combination

As mentioned in Section II, the detail loss measure (DLM)
and the additive impairment measure (AIM) are given by (19)
and (20):

(19)

(20)

where , , and represent the approximated HVS re-
sponses of the restored image, the original image, and the
additive impairment image, respectively; is the number of
pixels; and indicates that only the central region
of each subband is used in the spatial pooling, which helps to
overcome the edge effect of the wavelet transform and also
serves as a simple region of interest (ROI) model [35]. In (19)
and (20), the spatial and subband pooling of the HVS responses
are implemented by the Minkowski summation, the general
form of which is

(21)

where could be element of , , or . Following the pa-
rameterization method in [36], we choose the spatial pooling
exponent and the frequency pooling exponent by opti-
mizing the metric’s performance on a training set. The param-

Fig. 7. Equation (23) with � � ������ and � � ����.

eterization process is discussed in Section IV-C. It should be
noted that the approximation subband is not used in our metric.
This is an extreme case of assigning a tiny weight to the ap-
proximation subband. By doing so, we exclude the influence of
the luminance shift on perceived visual quality, which is well
known to be trivial.

DLM and AIM are combined by

(22)

where the function is given by

(23)

The parameters and of (23) are determined by training
as discussed in Section IV-C. Fig. 7 shows the training result
with and which is a monotonously
decreasing function with a gradually vanishing slope. The same

will result in smaller change of (23) for low-quality im-
ages (large ) than for high-quality images (small ). In other
words, will play a less and less important role as the visual
quality deteriorates, while at the same time, the significance of

increases. As shown in Fig. 7, AIM does not further influence
the metric output when its measure exceeds certain value.
For instance, if there are two tested images, both of which have
severe additive impairments quantified by , then
the one with the larger (clearer content visibility) will be pre-
dicted by our metric to be of higher visual quality.

IV. EXPERIMENTS

A. Subjective Image Databases

In this section, we present the experimental results of the
proposed image quality metric on five subjectively-rated image
databases, including LIVE [37], CSIQ [38], TID [28], [29], IVC
[39], and TOY [40]. Each of the subjective image databases con-
sists of hundreds of or even thousands of distorted images con-
taminated by a variety of distortion types, from commonly en-
countered ones, such as white noises, coding artifacts, etc., to
unconventional ones, such as the non-eccentricity pattern and
the block pattern in TID. Table I lists major characteristics of
each database. The subjectively-rated database provides each
of its distorted images a subjective score, e.g., mean opinion
score (MOS) or differential mean opinion score (DMOS). These
subjective scores were derived from subjective viewing tests in
which a lot of human observers participated and provided their
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TABLE I
MAJOR CHARACTERISTICS OF THE FIVE SUBJECTIVELY-RATED

IMAGE DATABASES

opinions on the visual quality of each distorted image. The
subjective viewing tests followed the international standards
[41]–[43] which provide detailed instructions on the viewing
conditions, the observer selection procedure, the assessment
procedure, etc., to guarantee the reliability of the obtained data.
Therefore to evaluate predictive performance, these subjective
ratings can be used as the ground truths to be compared against
the metric outputs.

B. Performance Measures

Following the Video Quality Expert Group’s work [44], each
metric score is mapped to first, to obtain a linear rela-
tionship between and the subjective scores. Its effect is
illustrated in Fig. 8. The employed nonlinear mapping function
is given by (24):

(24)
The fitting parameters are determined by
minimizing the sum of squared differences between the mapped
objective scores and the subjective ratings. To evaluate
the predictive performance, we calculate four common perfor-
mance measures, which are the linear correlation coefficient
(LCC), the root mean squared error (RMSE), the Spearman
rank-order correlation coefficients (SROCC), and the outlier
ratio (OR). The mapped scores and the subjective ratings
serve as their inputs. LCC between two data sets, and , is
defined as

(25)

RMSE between X and Y is given by

(26)

SROCC assesses how well the metric predicts the ordering of
the distorted images and can be defined as the LCC of the ranks
of and . The OR is defined as

(27)

Fig. 8. Illustration of the nonlinear mapping effect.

where is the number of predictions outside two standard
deviations2 of the subjective scores and is the total number
of predictions. A comparison between these performance mea-
sures can be found in [45].

C. Parameterization

In the proposed metric, there are four parameters to be
determined, i.e., the spatial pooling exponent , the frequency
pooling exponent , and and in (23). and are
chosen from integers which include the typical
values for pooling exponents. Larger value of the pooling expo-
nents makes the quality prediction depend more on the severe
distorted regions/subbands. In the literature, two strategies are
often used in the parameterization process. One is to choose the
parameters depending on how well the resulting model fits the
physiological or psychophysical data, e.g., in [11]. The other
strategy is to train the parameters to optimize performance in
terms of predicting subjective ratings, e.g., [36]. We adopt the
second strategy. More precisely, another subjective image data-
base, known as A57 [46], is used to train the four parameters.
It consists of 54 test images generated from three 512 512
sized original images. It covers six distortion types including
white noises, JPEG compression, JPEG2000 compression,
blur, DCQ quantization, and LH subbands quantization. The
training objective is to maximize the predictive performance of
the proposed metric on database A57. The four parameters are
automatically chosen by a global optimization algorithm [47].
The parameterization result is , , ,
and . The database A57 is only used in this pa-
rameter training process. In the following experiments, the
proposed metric is tested on the other five subjective image
databases as introduced in Section IV-A.

D. Overall Performance

Fig. 9 shows the scatter plots of the proposed image quality
metric on five subjective image databases. In all the graphs, each
point represents a test image. The vertical axis denotes the sub-
jective ratings of the perceived distortions and the horizontal
axis denotes the nonlinearly mapped metric outputs.

In Table II, the proposed algorithm is compared against
eight full-reference image quality metrics (IQM), i.e., PSNR,
WSNR [48], NQM [1], VSNR [49], MSSIM [50], Q [23],
IWSSIM [51], and VIF [24], all of which work with luminance

2The standard deviation indicates the variation of individual subjective ratings
around the mean value.
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Fig. 9. Scatter plots of the proposed image quality metric on five subjective image databases (after the nonlinear mapping). (a) LIVE. (b) TID. (c) CSIQ. (d) IVC.
(e) TOY.

only.3 LCC, RMSE, SROCC, and OR are calculated for per-
formance comparison. According to their definitions that are
briefly introduced in Section IV-B, larger LCC and SROCC
indicate stronger correlation between the metric outputs and
the subjective ratings, while smaller RMSE and OR indicate
less prediction errors. OR can be calculated for three image
databases only, LIVE, CSIQ, and TOY, since the others do not
provide the standard deviation data. In general, the proposed
IQM demonstrates quite good and stable performance. It is
the best-performer or tied for the best-performer on most of
the databases. LIVE image database contains five commonly
encountered distortions types. It covers a much wide range of
distortion intensity, which facilitates quality prediction. On the
other hand, TID contains 17 distortion categories, a relatively
small distortion intensity range, and images with both natural
scenes and artificial contents. This explains why most tested
IQMs achieve their best performance on LIVE and worst
performance on TID.

E. Statistical Significance

To assess the statistical significance of the performance dif-
ference between two metrics, F-test is conducted on the predic-
tion residuals between the metric outputs (after nonlinear map-
ping) and the subjective ratings. The residuals are supposed to
be Gaussian. Smaller residual variance implies more accurate
prediction. Let denote the ratio between the residual variances

3MATLAB function rgb2gray is used in the experiment to convert color im-
ages to gray scale.

of two different metrics (with the larger variance as the numer-
ator). If is larger than which is calculated based on
the number of residuals and a given confidence level, then the
difference between the two metrics is considered to be signifi-
cant at the specified confidence level. Table III lists the residual
variance of each metric on five subjective image databases. No-
tably due to the differences in employed subjective scales, the
residual variance varies a lot across different image databases.
As in [45], we use a simple criterion to measure the Gaus-
sianity of the prediction residuals: if the residuals have a kur-
tosis between 2 and 4, they are taken to be Gaussian. The results
of the Gaussian test are given in Table III, with (1) indicating
Gaussian and (0) indicating non-Gaussian. The with
95% confidence is also shown in Table III for each database.
In Table IV, the proposed metric is compared with the other
metrics regarding the statistical significance. In each entry, the
symbol “1”, “0”, or “-” means that on the image databases indi-
cated by the first column of the table, the proposed metric is sta-
tistically (with 95% confidence) better, worse, or indistinguish-
able, respectively, when compared with its competitors indi-
cated by the first row. As shown in Table IV, the proposed metric
outperforms most of its competitors statistically. Although its
performance on database LIVE is worse in comparison to the
state-of-the-art metrics VIF and IWSSIM, it demonstrates better
performance on other two image databases. Notably the predic-
tion residual of the proposed metric is less Gaussian than those
of the VIF and the IWSSIM on several databases. As analyzed
in [2], this implies that the residual variance of the proposed
metric has been inflated by a few outliers.
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TABLE II
OVERALL PERFORMANCE AND COMPUTATIONAL COMPLEXITY COMPARISON BETWEEN NINE OBJECTIVE IQMS. THE BOLDFACE

ENTRIES INDICATE THE STATISTICALLY BEST PERFORMERS AND THEIR EQUIVALENTS AS ELABORATED IN SECTION IV-E

TABLE III
RESIDUAL VARIANCES OF NINE METRICS ON FIVE SUBJECTIVE IMAGE DATABASES. SYMBOL “1” IN THE BRACKET

MEANS THE DISTRIBUTION OF THE RESIDUAL IS GAUSSIAN. SYMBOL “0” MEANS NON-GAUSSIAN

TABLE IV
PERFORMANCE COMPARISON REGARDING STATISTICAL SIGNIFICANCE. IN EACH

ENTRY, THE SYMBOL “1”, “0”, OR “-” MEANS THAT ON THE IMAGE DATABASE,
THE PROPOSED METRIC IS STATISTICALLY (WITH 95% CONFIDENCE) BETTER,

WORSE, OR INDISTINGUISHABLE IN COMPARISON TO ITS COMPETITOR

F. Performance on Individual Distortion Types

Good (bad) overall performance does not necessarily mean
good (bad) performance for individual distortion types. For
example, it is possible that a metric which achieves excel-
lent performance for individual distortion types fails badly
regarding overall performance: it may tolerate distortion type
A more than B, leading to higher quality prediction for type-A
images than type-B images. Therefore, in this subsection, we
compare the metric performance on individual distortion types.
More precisely, in Table V we show the predictive performance
of nine IQMs on five common distortion types, i.e., JPEG
compression, JPEG2000 compression, additive Gaussian white
noise (AGWN), blur, and contrast change. For easier com-
parison, only the SROCC values are listed. SROCC is chosen
because it is suitable for measuring a small number of data
points and its value will not be affected by an unsuccessful

monotonic nonlinear mapping. In Table V, the bold entries de-
note the best performer in terms of SROCC for each distortion
type on each database. The underlined entries denote the statis-
tically best performer (with 95% confidence) and the italicized
entries indicate metrics that are statistically indistinguishable
from the underlined ones. In general, both the proposed metric
and the IWSSIM achieve the highest SROCC on six image
sets. By comparing the SROCC difference, it can be observed
that the proposed metric is tied for the best performer (in terms
of SROCC) on most of the tested image sets. Furthermore, the
proposed algorithm is the statistically best-performing metric
on nine image sets and is statistically equivalent to the best
performer on all but two of the rest of the image sets.

Many factors may contribute to the inconsistent predictive
performances across the different databases. For instance, most
of the IQMs in our experiment including the proposed one per-
form quite well for white noise of all databases except TID. Fur-
ther looking into this exception, it was found out that white noise
of TID spans a relatively small quality variation (PSNR vari-
ance 11.4) compared with the other databases (e.g., PSNR vari-
ance 96.6 for LIVE), which will increase prediction difficulties.
The same explanation can be applied to the varying metric per-
formance on distortion type JPEG, for which LIVE and CSIQ
exhibit larger quality variation and thus facilitate quality pre-
diction. Another cross-database performance variance can be
found in the distortion type Contrast Change: all IQMs in the
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TABLE V
PERFORMANCE COMPARISON ON INDIVIDUAL DISTORTION TYPES, USING SROCC AS THE PERFORMANCE MEASURE. THE BOLD ENTRIES DENOTE

THE BEST PERFORMER IN TERMS OF SROCC. THE UNDERLINED ENTRIES DENOTE THE STATISTICALLY BEST PERFORMER (WITH 95% CONFIDENCE).
THE ITALICIZED ENTRIES INDICATE METRICS THAT ARE STATISTICALLY INDISTINGUISHABLE FROM THE UNDERLINED ONES

test demonstrate much better performance on CSIQ than TID.
The main reason is that CSIQ contains contrast reduction only,
while TID covers both contrast reduction and enhancement, the
latter cannot be handled well by most IQMs. The proposed IQM
demonstrates best performance for Contrast Change on TID,
mainly because it deliberately takes contrast enhancement (CE)
into consideration, as elaborated in Section III-A, without which
the SROCC will drop from 0.85 to around 0.41. Since our metric
cannot perfectly separate CE from additive impairments and
does not distinguish moderate CE from excessive CE, its per-
formance on CE is just moderately better than the second best
performer.

G. Hypotheses Validation

By using the abundant subjective data, in this subsection we
try to justify three hypotheses made by us in Section II: 1) using
the restored and additive impairment images to mask each other
is a better way to implement spatial masking in comparison to
the traditional method which uses the reference image as the
masker; 2) decoupling detail losses and additive impairments do
benefit the perceptual quality prediction; and 3) detail losses and
additive impairments correlate with visual quality in different
ways so that it is better to measure them using different methods.

To verify the first assumption, we modify the spatial masking
process of the proposed metric. Since the restored and additive
impairment images are superposed to form the test image, one’s
presence will affect the visibility of the other. Therefore, in the
proposed metric, both images serve as the masker to modulate
the intensity of the other. As discussed in Section II, traditional
masking uses reference image to mask the distortions. We ar-
gued that it might be inferior to the proposed method since the
test image often becomes less textured than the reference and
it is impossible to simulate how additive impairments diminish
content visibility. To prove this, in our metric we replace the
proposed masking with the traditional one by using the refer-
ence to mask the additive impairments and by leaving the re-
stored image unchanged. All the other components are kept the

TABLE VI
OVERALL PERFORMANCE COMPARISON (IN TERMS OF SROCC) BETWEEN

THE PROPOSED METRIC, M1 AND M2. M1 IS A MODIFIED VERSION OF THE

PROPOSED METRIC USING TRADITIONAL SPATIAL MASKING SCHEME. M2 IS

A MODIFIED VERSION OF THE PROPOSED METRIC WITHOUT DECOUPLING

ADDITIVE IMPAIRMENTS AND DETAIL LOSSES

same and the parameters are trained on database A57. The re-
sulting metric is named as M1 and its performance is compared
with the proposed metric in Table VI. It can be observed that
although the performance improvement of the proposed metric
over M1 is marginal on three databases, the proposed masking
indeed outperforms the traditional one consistently.

The advantage of the proposed decoupling strategy comes
from several aspects. Besides the new masking strategy men-
tioned above, the decoupling also makes the measure of additive
impairments and detail losses using specific ways possible, the
necessity of which will be further discussed in the following
paragraph. Furthermore, the high-level HVS assumption as
discussed in Sections I and II can be implemented when com-
bining the two quality measures together. By discarding all
these merits, we develop another metric, known as M2, which
treats the image differences homogeneously and utilizes the
traditional strategy for spatial masking. For fair comparison,
M2 also employs the contrast sensitivity function described in
Section III-B. The classical Minkowski summation is applied
for the spatial and frequency pooling, with the two pooling
exponents trained on database A57. The performance of M2
is shown in Table VI. We can see that without the benefits
from the proposed decoupling, the predictive performance
dramatically degrades.

From Table V, it can be observed that PSNR achieves out-
standing predictive performance on additive noise (AWGN)
distorted images: it is either the best performer or statistically
equivalent to the best performer. However, PSNR performs
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TABLE VII
PERFORMANCE COMPARISON (IN TERMS OF SROCC) BETWEEN M2 AND

� ON DISTORTION TYPE BLUR. M2 UTILIZES THE CLASSICAL MINKOWSKI

SUMMATION TO INTEGRATE DISTORTIONS WITHOUT CONSIDERING THE

ORIGINAL CONTENT. ON THE OTHER HAND, � AS GIVEN BY (19) NORMALIZES

THE INTEGRATED DISTORTION INTENSITY WITH THE ORIGINAL CONTENT

badly for images distorted by JPEG or JPEG2000 compression,
blur, etc., which majorly suffer from detail loss. This obser-
vation inspires us to hypothesize that additive impairment and
detail loss may be associated with perceptual quality in different
ways and thus should be measured by two distinct methods.
Specifically, since additive impairments are relatively inde-
pendent of the original image content, we assume that visual
quality with respect to additive impairment can be predicted
by analyzing their intensities without considering the original
content. On the other hand, visual quality with respect to detail
losses is supposed to be determined by the percentage of visual
information losses/remains. This assumption is consistent with
VIF in which the useful information communicated by the test
image is normalized by the total information of the original
image. Therefore, in (20) and (19), the integrated distortion
intensity is normalized by the pixel number and the original
image content, respectively. It should be noted that DLM
[given by (19)] is an approximate calculation of the percentage
of visual information remains. Its low complexity makes the
proposed metric time efficient. As a primary validation of the
above assumption, we compare the predictive performances of
DLM and M2 on images distorted by Gaussian blur. Blurred
images mainly suffer from detail losses; hence, it is suitable to
use blurred images to test detail loss measures. As mentioned
above, M2 which can be considered as an improved version of
PSNR that utilizes the classical Minkowski summation to pre-
dict visual quality. In comparison to DLM, it only analyzes the
distortion intensity but does not consider the original content.
Table VII shows the comparison results. DLM outperforms
M2 by a large margin which indicates the usefulness of taking
into account the original content in detail loss measure. The
development of more accurate additive impairment measure
and detail loss measure needs further investigation. We advo-
cate in this paper to consider their differences for visual quality
assessment.

H. Complexity Analysis

The execution speed of each IQM is listed in the bottom row
of Table II. We ran the speed test on a PC with a dual-core 3-GHz
CPU and a 4-Gbyte memory. The speed is in the unit of second
per image and is an averaged value calculated on the image
database A57. The proposed algorithm is implemented using
MATLAB. IWSSM is downloaded from the author’s website
[52]. Q is provided by its author. Both of them are implemented
using MATLAB. The other IQMs are from the visual quality
assessment package MeTriX MuX version 1.1 [53]. As claimed
in [53], MeTriX MuX is a MATLAB package that implements

wrapper code to provide a common interface for various IQMs
and almost every IQM code is in its original form, i.e., pro-
grammed by the IQM’s authors. It can be seen from Table II that
the proposed metric has a moderate computational complexity
compared with the others.

The huge complexity of VIF mainly comes from the highly
overcomplete steerable pyramid decomposition. IWSSIM
applies a five-scale Laplacian pyramid decomposition and
computes an information content weight map for each scale.
Q performs singular value decomposition for both the original
and the test image which is time consuming. Both VSNR
and MSSIM employ 9/7 biorthogonal wavelet transform and
the faster speed of VSNR is partially attributed to its .dll
implementation of the wavelet transform. Both WSNR and
NQM utilize fast Fourier transform implemented by MATLAB
function. However, WSNR simply weights the Fourier domain
differences with CSF, while NQM takes into account more
HVS characteristics such as contrast calculation, CSF, contrast
masking, etc., which makes NQM much more time consuming.
The proposed IQM uses orthonormal wavelet transform.
Actually, the performance of our metric is not sensitive to the
choice of the wavelet transform. Using wavelet is mainly
out of concern for algorithm complexity: higher order wavelets
are not used because they will increase complexity without
further enhancing performance. In fact, wavelet,
which is even faster, can perform equally well given a slightly
modification on the parameter setting. However, by using

wavelet transform, the decoupled images will appear
to be severe blocky, especially for low-quality test images. To
avoid the misconception that such blockiness is an intrinsic flaw
of the proposed decoupling algorithm, wavelet transform
is used instead of .

V. CONCLUSION

An effective algorithm is proposed which explicitly separates
detail losses and additive impairments for image quality assess-
ment. For impairments separation, a wavelet domain decoupling
algorithm is developed which works effectively for most dis-
tortion types and is able to distinguish contrast enhancements
from additive impairments. Two important HVS characteristics,
i.e., CSF and contrast masking, are incorporated into the metric
to better simulate HVS responses to the visual inputs. We pro-
pose two simple quality measures DLM and AIM, which are re-
sponsible for correlating detail losses and additive impairments
with visual quality, respectively. The outputs of DLM and AIM
are adaptively combined to yield the overall quality measure,
in such a way that DLM will play a more important role in
quality prediction for low-quality images than for high-quality
images. By experiments based on five subjectively-rated image
databases, we demonstrate the effectiveness of the proposed
image quality metric in matching subjective ratings. For the fu-
ture work, we will take into account the chrominance distortions
and extend the proposed algorithm to video quality assessment.
Moreover, we will investigate the influence of distortion distri-
bution on the perceived visual quality, e.g., the differences be-
tween detail losses happening to the ROI and non-ROI and be-
tween local additive impairments and global ones, etc.
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