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Abstract

Dense video captioning is a newly emerging task that

aims at both localizing and describing all events in a video.

We identify and tackle two challenges on this task, namely,

(1) how to utilize both past and future contexts for accurate

event proposal predictions, and (2) how to construct infor-

mative input to the decoder for generating natural event de-

scriptions. First, previous works predominantly generate

temporal event proposals in the forward direction, which

neglects future video context. We propose a bidirectional

proposal method that effectively exploits both past and fu-

ture contexts to make proposal predictions. Second, dif-

ferent events ending at (nearly) the same time are indis-

tinguishable in the previous works, resulting in the same

captions. We solve this problem by representing each event

with an attentive fusion of hidden states from the proposal

module and video contents (e.g., C3D features). We fur-

ther propose a novel context gating mechanism to balance

the contributions from the current event and its surrounding

contexts dynamically. We empirically show that our atten-

tively fused event representation is superior to the proposal

hidden states or video contents alone. By coupling proposal

and captioning modules into one unified framework, our

model outperforms the state-of-the-arts on the ActivityNet

Captions dataset with a relative gain of over 100% (Meteor

score increases from 4.82 to 9.65).

1. Introduction

With the rapid growing of videos on the Internet, it be-

comes much more important to automatically classify and

retrieve these videos. While images and short videos have

attracted extensive attentions from vision research commu-

nity [43, 25, 40, 30, 15, 9, 31, 6, 24], understanding long

untrimmed videos remains an open question. To help fur-

ther understand videos and bridge them with human lan-

∗Work done while Jingwen Wang was a Research Intern with Tencent

AI Lab.
§Corresponding authors.

Figure 1. Two main challenges in dense video captioning.

First, previous works, e.g., SST [3], process a video sequence

in the forward direction. Future video context (c) express-

ing “The man begins to mold his hair” is not con-

sidered, which presents close relationship with current proposal

(b) expressing “The man blow drys his hair”. Second,

previous work only uses the proposal hidden state ht at time step t

to represent the detected proposal, which cannot distinguish events

(e.g., P1, P2) that end at the same time step.

guage, a new task of dense video captioning is proposed

[20]. The goal is to automatically localize events in videos

and describe each one with a sentence. The capability of lo-

calizing and describing events in videos will benefit a broad

range of applications, such as video summarization [23, 29],

video retrieval [35, 44], video object detection [48], video

segment localization with language query [1, 11], and so on.

Compared to video captioning, which targets at de-

scribing a short video clip (e.g., 20s long in MSR-VTT

dataset [41]), dense video captioning requires analyzing a

much longer and complicated video sequence (e.g., 120s

long in ActivityNet Captions [20]). Since long videos usu-

ally involve multiple events, dense video captioning re-

quires simultaneously performing temporal localization and
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captioning, which issues the following two challenges.

First, generating video action proposals requires local-

izing all possible events that occur in a video. To do so, one

simple way would be to use sliding windows to iterate over

a video and classify every window to either an action or

background. However, this kind of methods can only pro-

duce short proposals that are no longer than the predefined

sliding window. To overcome this problem, Buch et al. [3]

proposes Single Stream Temporal Action Proposals (SST)

to eliminate the need to divide long video sequences into

clips or overlapped temporal windows. As shown in Fig. 1,

SST runs through a video only once and densely makes pro-

posal predictions ending at that time step, with k different

offsets. Krishna et al. [20] uses a similar proposal method

as SST. While promising results were achieved, these meth-

ods simply ignore future event context and only encode past

context and current event information to make predictions.

Since events happening in a video are usually highly cor-

related, it is non-preferable to discard valuable future in-

formation. For example, in Fig. 1, when making proposal

prediction at the end of event (b), SST has run over both

past context (a) and current event content, but not future

video context (c). Event (b) highly correlates with event

(c). Recognizing and localizing event (b) will help local-

ize event (c) more accurately, and vice versa. In this paper,

we propose a straightforward yet effective solution, namely,

Bidirectional SST, towards efficiently encoding both past,

current, and future video information. Specifically, in the

forward pass we learn k binary classifiers corresponding

to k anchors densely at each time step; in backward pass

we reverse both video sequence input and predict proposals

backwards. This means that the forward pass encodes past

context and current event information, while the backward

pass encodes future context and current event information.

Finally we merge proposal scores for the same predictions

from the two passes and output final proposals. Technical

details can be found in Section 3.

Once proposals are obtained, another important ques-

tion is how to represent these proposals in order to gener-

ate language descriptions. In [20], the LSTM hidden state

in proposal module is reused to represent a detected pro-

posal. However, the discrimination property of event rep-

resentation is overlooked. As shown in Fig. 1, k propos-

als (anchors) end at same time step, but only one LSTM

hidden state ht at that time step is returned. For example,

P1 and P2 will be both represented with ht. To construct

more discriminative proposal representation, we propose to

fuse proposal state information and detected video content

(e.g. C3D sequences). The intuition behind that is involving

detected clips help discriminate highly overlapped events,

since the detected temporal regions are different. Based on

this idea, we further explore several ways for fusing these

two kinds of information to boost dense captioning perfor-

mance.

To output more confident results, we further propose

joint ranking technique to select high-confidence proposal-

caption pairs by taking both proposal score and caption con-

fidence into consideration.

To summarize, the contributions of this paper are

three-fold. First, we present Bidirectional SST for better

temporal action proposals with both past, current, and fu-

ture contexts encoded. Second, for captioning module, we

explore different ways to attentively fuse proposal state in-

formation and detected video content to effectively discrim-

inate highly overlapped events. Third, we further present

joint ranking at inference time to select proposal-caption

pairs with high confidence.

2. Related Work

Dense video captioning requires both temporally local-

ization and descriptions for all events happening in a video.

These two tasks can be handled as pipelines or coupled to-

gether for end-to-end processing. We review related works

on the above two tasks.

2.1. Temporal Action Proposals

Analogous to region proposals in image domain, tem-

poral action proposals are candidate temporal windows

that possibly contain actions. Sparse-prop [4] applies dic-

tionary learning for generating class-independent propos-

als. S-CNN [34] uses 3D convolutional neural networks

(CNNs) [36] to generate multi-scale segments (proposals).

TURN TAP [12] uses clip pyramid features in theri model,

and it predicts proposals and refines temporal boundaries

jointly. DAPs [8] first applies Long Short-Term Memory

(LSTM) [14] to encoding video content in a sliding window

and then predicts proposals covered by the window. Built

on [8], SST [3] further takes long sequence training prob-

lem into consideration and generates proposals in a single

pass. However, all these methods either fail to produce long

proposals or do not exploit future context. In contrast, our

model for temporal proposal tackles these two problems si-

multaneously.

2.2. Video Captioning

Video captioning with one single sentence. There are

a large body of works on this topic. Earlier works

are template-based [13, 33], which replace POS (part-of-

speech) tags with detected objects, attributes, and places.

[13] learns semantic hierarchies from video data in order to

choose an appropriate level of sentence descriptions. [33]

first formulates video captioning as a machine translation

problem and uses CRF to model semantic relationship be-

tween visual components. Recent approaches are neural-

based, in an encoder-decoder fashion [19, 38, 26, 45, 49,

27, 10, 7, 22]. Venugopalan et al. models both video
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Figure 2. The main framework of our proposed method. (a) A video input is first encoded as a sequence of visual features (e.g., C3D). (b)

The visual features are then fed into our bidirectional sequence encoder (e.g., LSTM). (c) Each hidden state from the forward/backward

seq. encoder will be fed into the proposal module. The forward/backward seq. encoders are jointly learned to make proposal predictions.

(d) Hidden states at boundary of a detected event (
→

hn,
←

hm) will be served as context vectors for the event. The context vectors and detected

event clip features are then fused together and served as visual information input. We detail the fusion methods in Section 3.2.2. (e) The

decoder LSTM translates visual input into a sentence.

and language as sequences using recurrent neural networks

[38]. To strengthen the semantic relationships between a

video and corresponding generated sentence, Pan et al. pro-

posed to learn a translation and a common embedding space

shared by video and language jointly [26]. Some subse-

quent methods further explore attention models in video

context. Inspired by the soft attention mechanism [42] in

image captioning, Yao et al. proposed to generate temporal

attention over video frames when predicting next word [45].

Zhang et al. proposed to learn a task-driven fusion model

by dynamically fusing complementary features from multi-

ple channels (appearance, motion) [49]. Some other works

[27, 10, 46] exploit attributes or concepts (objects, actions,

etc.) to improve video captioning performance. Chen et

al. further considered different topics from web videos and

generating topic-guided descriptions [7].

Video captioning with a paragraph. While aforemen-

tioned captioning methods generate only one sentence for

the input video, video paragraph generation focuses on pro-

ducing multiple semantics-fluent sentences. Rohrbach et al.

adapted statistical machine translation (SMT) [33] to gener-

ate semantic consistent sentences with desired level of de-

tails [32]. Yu et al. proposed a hierarchical RNN to model

both cross-sentence dependency and word dependency [47].

Dense video captioning. Video paragraph generation relies

on alignment from ground-truth event intervals at test time.

To relieve this constraint, dense video captioning generates

multiple sentences and grounds them with time locations

automatically, which is thus much more challenging. To

the best of our knowledge, [20] is the only published work

on this topic. In [20], the task of dense-captioning events

in video together with a new dataset: ActivityNet Captions1

were introduced. The model in [20] is composed of an event

proposal module and a captioning module. The event pro-

posal module detects events with a multi-scale version of

DAPs [8] and represents them with LSTM hidden states.

The captioning module is responsible for describing each

detected proposal. Compared to [20], our method enjoys

the following advantages. First, our bidirectional proposal

module encodes both past and future contexts while [20]

only utilizes past context for proposal prediction. Second,

our model is able to distinguish and describe highly over-

lapped events while [20] cannot.

3. Method

In this section we introduce our main framework for

densely describing events in videos, as shown in Fig. 2. We

will first introduce our bidirectional proposal module, then

our captioning module. Note that these two modules couple

together and thus can be trained in an end-to-end manner.

1http://cs.stanford.edu/people/ranjaykrishna/densevid/
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3.1. Proposal Module

The goal of the proposal module is to generate a set

of temporal regions that possibly contain actions or events.

Formally, assume that we have a video sequence X =
{x1, x2, ..., xL} with L frames. Following [20], each video

frame is encoded by the 3D CNN [36], which was pre-

trained on Sports-1M video dataset [17]. The extracted

C3D features are of temporal resolution δ = 16 frames, dis-

cretizing the input stream into T = L/δ time steps. We

perform PCA to reduce the feature dimensionality (from

4096 to 500). The generated visual stream is thus V =
{v1,v2, ...,vT }.

Forward Pass. We use LSTM to sequentially encode the

visual stream. The sequence encoder processes visual se-

quences and accumulates visual clues across time. The

output LSTM hidden state
→

ht ∈
{
→

hi

}T

i=1
at time step t

thus encodes visual information for the passed time steps

{1, 2, . . . , t}. The hidden state will be fed into K indepen-

dent binary classifiers and produces K confidence scores
→

Cp

t

=
{→

ci
t}

i=1,...,K
indicating the probability of K pro-

posals specified by
→

S
t

=
{→

si
t}

i=1,...,K
.
→

si
t

denotes a

video clip with end time as t and start time as t− li, where

{li}
K
i=1 is the lengths of the predefined K proposal anchors.

Please note that all the K proposals in
→

S
t

share the same

end time t. The proposal scores
→

Cp

t

is calculated by a fully

connected layer:

→

Cp

t

= σ(
→

Wc

→

ht + bc), (1)

where σ denotes sigmoid nonlinearity.
→

Wc, bc are shared

across all time steps.

Backward Pass. Our proposed bidirectional proposal mod-

ule also involves a backward pass. The aim of such a proce-

dure is to capture future context, in addition to current event

clue for better event proposals. We feed the input sequence

V in a reverse order to the backward sequence encoder. It

is expected to predict proposals with high scores at the orig-

inal start time of proposals. Similarly, at each time step, we

obtain K proposals
←

S
t

=
{←

si
t}

i=1,...,K
with K confidence

scores
←

Cp

t

=
{←

ci
t}

i=1,...,K
, and a hidden state

←

ht .

Fusion. After the two passes, we obtain N proposals col-

lected from all time steps of both directions. In order to

select proposals with high confidence, we fuse the two sets

of scores for the same proposals, yielding the final scores:

Cp =
{→

ci ×
←

ci
}N

i=1
. (2)

Many fusing strategies can be adopted. In this paper, we

simply use the multiplication to fuse proposals from the two

passes together. Proposals with scores larger than a thresh-

old τ will be finally selected for further captioning. We do

not perform non-maximum suppression since events hap-

pening in a video are usually highly overlapped, the same

as what has been adopted in [20].

3.2. Captioning Module

Following the encoder-decoder framework, a recurrent

neural network, specifically LSTM, is leveraged in our cap-

tioning module to translate visual input into a sentence. In

this section, we first recap LSTM. Then we describe a novel

dynamic fusion method.

3.2.1 Decoder: Long Short-Term Memory

LSTM [14] is used as our basic building block, con-

sidering its excellent ability for modeling sequences. An

LSTM unit consists of an input cell gt , an input gate it , a

forget gate ft , and an output gate ot and they can be com-

puted by:









it
ft
ot
gt









=









σ
σ
σ

tanh









W





Et

Ft

Ht−1



, (3)

where Et is the embedding of input word at time step t, Ft

is representation at t that will be described later, Ht−1 is

the previous LSTM hidden state and W is a transformation

matrix to be learned. The memory cell ct and hidden state

Ht are updated by:

ct = ft ⊙ ct−1 + it ⊙ gt, (4)

Ht = ot ⊙ tanh(ct), (5)

where ⊙ denotes element-wise multiplication operator. At

each time step, a linear projection and softmax operation

are performed on the hidden state to generate probability

distribution over all possible words.

3.2.2 Dynamic Attentive Fusion with Context Gating

To caption a detected proposal, previous work just

takes the proposal hidden state as input to the LSTM [20].

In this paper we propose to fuse the proposal states from the

forward and backward passes, which capture both past and

future contexts, together with the encoded visual features

of the detected proposal. Formally, the visual input to the

decoder is:

Ft(si) = f(
→

hn,
←

hm, V̂ = {vi}
n
i=m,Ht−1), (6)

where m and n denote the start and end time stamp for the

detected event si . V̂ denotes the clip features, specifically
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C3D for the proposal si.
→

hn and
←

hm are the proposal hid-

den states, encoding the past and future context information

of the detected proposal, which are simply named context

vectors. Ht−1 is the previous LSTM hidden state. And f
is a mapping to output a compact vector, which is to be fed

into LSTM unit using Eq. (3).

The most straightforward way is to simply concatenate

V̂ ,
→

hn, and
←

hm together without considering Ht−1. How-

ever, it is implausible, as the dimension of V̂ depends on

the length of a detected event. Another simple way is to

use the mean of V̂ and concatenate it with proposal hidden

states. However, mean pooling does not explicitly explore

relationship between an event and surrounding contexts.

Temporal Dynamic Attention. As demonstrated in [42,

45], dynamically attending on image sub-regions and video

frames at each time step when decoding can effectively im-

prove captioning performance. Therefore, in our dense cap-

tioning model, we also design a dynamic attention mecha-

nism to fuse visual features V̂ and context vectors
→

hn,
←

hm.

At each time step t, the relevance score zti for vi+m−1 is

obtained by:

zti = WT
a ·tanh(Wvvi+m−1+Wh[

→

hn,
←

hm]+WHHt−1+b),
(7)

where Ht−1 is the hidden states of decoder at the t − 1
time step. [·, ·] denotes vector concatenation. The weights

of vi+m−1 can be obtained by a softmax normalization:

αt
i = exp(zti)/

p
∑

k=1

exp(ztk), (8)

where p = n−m+1 denotes the length of a proposal. The

attended visual feature is generated by a weighted sum:

ṽ
t =

p
∑

i=1

αt
i · vi+m−1. (9)

We expect the model can better locate “key frames” and

produce more semantic correlated words by involving con-

text vectors for calculating the attention as in Eq. (7). The

final input to LSTM unit could be expressed as:

F(si) = [ṽt,
→

hn,
←

hm]. (10)

Context Gating. Inspired by the gating mechanisms in

LSTM, we propose to explicitly model the relative contribu-

tions of the attentive event feature and contexts when gen-

erating a word. Specifically, once obtain the attended visual

feature ṽ
t, instead of directly concatenating it with context

vectors, we learn a “context gate” function to balance them.

In our context gating mechanism, the first step is to project

the event feature and context vectors into the same space:

v̇
t = tanh(W̃ ṽ

t), (11)

h = tanh(Wctx[
→

hn,
←

hm]), (12)

where W̃ and Wctx are the projection matrices. The context

gate is then calculated by a nonlinear layer:

gctx = σ(Wg[v̇
t,h,Et,Ht−1]), (13)

where Et is word embedding vector, Ht−1 is previous

LSTM state. The context gate explicitly measures the con-

tribution for surrounding context information (h) at current

decoding stage (given Et, Ht−1). We then use the con-

text gate to fuse the event feature and the context vector

together:

F(si) = [(1− gctx)⊙ v̇
t, gctx ⊙ h]. (14)

With this mechanism, we expect the network to learn how

much context should be used when generating next word.

3.3. Training

Our complete dense video captioning model, as illus-

trated in Fig. 2, couples the proposal and captioning module

together. Therefore, two types of loss functions are consid-

ered in our model, specifically, the proposal loss and cap-

tioning loss.

Proposal Loss. We collect lengths of all ground-truth pro-

posals and group them into K=128 clusters (anchors). Each

training example V = {vi}
T
i=1 is associated with ground-

truth labels {yt}
T
t=1. Each yt is a K-dim vectors with bi-

nary entries. yjt is set to 1 if the corresponding proposal

interval has a temporal Intersection-over-Union (tIoU) with

the ground-truth larger than 0.5 and set to 0 otherwise. We

adopt weighted multi-label cross entropy as proposal loss

Lp following [3] to balance positive and negative propos-

als. For a given video X ∈ X at time step t:

Lp(c, t,X, y) = −

K
∑

j=1

wj
0y

j
t logc

j
t +wj

1(1−yjt )log(1−cjt ),

(15)

where wj
0, wj

1 are determined based on the numbers of pos-

itive and negative proposal samples. cjt is the prediction

score for the j-th proposal at time t. We calculate forward

and backward loss in the same way. We add them together

and jointly train the forward and backward proposal mod-

ule. Lp is obtained by averaged along time steps and for all

videos.

Captioning Loss. We only feed proposals of high tIoU (>
0.8) with ground-truths to train captioning module. Follow-

ing [39], we define captioning loss Lc as sum of negative

log likelihood of correct word in a sentence with M words:

Lc(P ) = −

M
∑

i=1

log(p(wi)), (16)
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where wi is the i-th word in a ground truth sentence. Lc is

obtained by averaging all Lc(P ) for all proposals P .

Total Loss. By considering both proposal localization and

captioning, the total loss is given by:

L = λ× Lp + Lc, (17)

where λ balances the contributions between proposal local-

ization and captioning, which is simply set to 0.5. A two-

layer LSTM is used to encode a video stream and densely

predict K proposals at each time step. Without loss of gen-

erality, we do not use multiple strides but with only stride

of 64 frames (2 seconds). This gives a reasonable number

of unfolding LSTM steps (60 on average) to learn tempo-

ral dependency. We do not perform stream sampling and

only take the whole video as a single stream, to make sure

all ground truth proposals are included. For fair compari-

son, we initialize our bidirectional sequence encoder with a

single layer LSTM for each direction (the baseline method

adopts a two-layer LSTM). We use a two-layer LSTM for

decoding stage (caption generation). We first train the pro-

posal module (about 5 epochs) to ensure a good initializa-

tion and then train the whole model in an end-to-end man-

ner. The Adam [18] optimization algorithm with base learn-

ing rate of 0.001 and batch size of 1 is used. Please note that

the above hyper parameters are the same for our method

and all baselines.

3.4. Inference by Joint Ranking

As illustrated in Fig. 2, dense captioning involves the

two aforementioned modules. As such, to affectively de-

scribe each event, two conditions need to be satisfied: (1)

the localization yielded by proposal module is of high score;

(2) the produced caption is of high confidence. To this end,

we propose a novel joint ranking approach for dense cap-

tioning during the inference stage. We use Eq. (2) to mea-

sure the proposal score Cp. For a generated caption of a

proposal consisting of M words {wi}
M
i=1, we define its con-

fidence by summing all log probabilities of predicted words:

cc =

M
∑

i=1

log(p(wi)). (18)

Larger p(wi) indicates higher confidence score. Let Cc =
{

c
(i)
c

}N

i=1
denotes confidence scores of all sentences. We

merge the two scores with a weighted sum strategy by

simultaneously considering proposal localization and cap-

tioning:

C = γ × Cp + Cc, (19)

where γ is a trade-off parameter to control the contributions

from localization and captioning. As Cp is of smaller scale,

γ is empirically set as 10 in this paper. Based on the ob-

tained C, Top K proposals together with their captions are

selected for further evaluation.

4. Experiment

To detail our contributions, we conduct experiments on

the two tasks: event localization and dense event captioning.

The former evaluates how good the generated proposals are,

and the latter measures the performance of our whole dense

captioning system. We begin by describing the benchmark

dataset: ActivityNet Captions [20].

Dataset. ActivityNet Captions [20] is built on ActivityNet

v1.3 [5] which includes 20k YouTube untrimmed videos

from real life. The videos are 120 seconds long on aver-

age. Most of the videos contain over 3 annotated events

with corresponding start/end time and human-written sen-

tences, which contain 13.5 words on average. The number

of videos in train/validation/test split is 10024/4926/5044,

respectively. Ground truth annotations from the test split

are withheld for competition. Therefore, we first compare

our model with baseline methods on validation set, then we

report our final result returned from the test server.

4.1. Event Localization

Metric. We use Precision@1000 and Recall@1000 aver-

aged at different tIoU thresholds {0.3, 0.5, 0.7, 0.9} as met-

rics. The evaluation toolkit we used is provided by [20]. We

also use F1 score to simultaneously consider precision and

recall, arguing that F1 is a more reasonable metric for event

localization, by showing experimental evidences.

Compared Methods. We compare the following methods:

• Random: Both start time and end time are chosen ran-

domly.

• Forward SST: The method used in [3].

• Backward SST: Similar as Forward SST, except that

the video sequence is fed in a reverse order.

• Bidirectional SST: Our proposed method. We combine

Forward SST and Backward SST and jointly inference

by fusing scores for the same predicted proposals.

Results. As shown in Fig. 3, Random proposal method

gives the highest recall rate among all compared methods.

The reason is that most ground truth proposals are pretty

long (30% compared to total video length on average, while

only 2% for THUMOS-14 [16] action dataset), and thus

randomly sampling can possibly cover all ground truth pro-

posals. However, random sampling gives very low pre-

cision. A low-precision proposal method will cause per-

formance degeneration for dense captioning system which

simply describes all proposals. This is different from ac-

tion detection, which involves a classification module to fur-

ther filter out background proposals. Therefore, we mainly

refer to F1 score which combines both precision and re-

call to measure how good the generated proposals are. We

compare our bidirectional proposal module with baseline

methods using F1 against different tIoU thresholds with
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Figure 3. Comparison for different proposal methods.

Table 1. Performance of different methods on ActivityNet Captions validation set. All values are reported in percentage (%). No validation

result is provided by [20]. H: context vectors, E: event features, TDA: temporal dynamic attention, CG: context gate.

Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 Meteor Rouge-L CIDEr-D

SST + H 16.78 5.94 2.22 0.88 7.87 16.75 8.17

Bi-SST + H 17.25 6.48 2.68 1.20 8.35 17.56 8.49

Bi-SST + E 17.51 7.17 3.08 1.32 8.36 17.96 9.13

Bi-SST + E + H 17.50 6.95 2.94 1.28 8.78 17.68 9.10

Bi-SST + E + H + TDA 18.70 8.17 3.63 1.59 9.00 18.64 10.02

Bi-SST + E + H + TDA + CG 19.37 8.69 4.03 1.89 9.19 19.29 11.03

Bi-SST + E + H + TDA + CG + Ranking 18.99 8.84 4.41 2.30 9.60 19.10 12.68

Table 2. Comparison with the state-of-art method on ActivityNet

Captions test set. The test server returns only Meteor score (in

percentage (%)).

Method Meteor

Krishna et al. [20] 4.82

Ours 9.65

ground truth proposals. Our method surpasses SST with

clear margins as shown in Fig. 3. This confirms that bidi-

rectional prediction with encoded future context indeed im-

proves proposal quality, compared to single direction pre-

diction model.

4.2. Dense Event Captioning

Metric. We mainly refer to Meteor [2] to measure the

similarity between two sentences as it is reported to be

most correlated to human judgments when a small num-

ber of sentence references are given [37]. To measure the

whole dense captioning system, we average Meteor scores

at tIoU thresholds of 0.3, 0.5, 0.7, and 0.9 when describ-

ing top 1000 proposals for each video. The same strategy

has been adopted in [20]. For validation split, we also pro-

vide BLEU [28], Rouge-L [21], and CIDEr-D [37] scores

for complete comparison. For test split, we report Meteor

score, since the test server only returns Meteor result.

Compared Methods. We denote “H” as context vectors,

“E” as event clip features, “TDA” as temporal dynamic at-

tention fusion, and “CG” as context gate, respectively. We

compare the following methods:

• SST + H: This method utilizes SST [3] to generate

proposals and represents them with corresponding hid-

den states for generating descriptions. This approach

is served as our baseline.

• Bi-SST + H: We apply our bidirectional proposal

method to generating proposals. The hidden states

from both direction are concatenated to represent an

event.

• Bi-SST + E: Mean pooled event feature is used to rep-

resent the detected event.

• Bi-SST + E + H: Mean pooled event feature and hidden

states are concatenated for representation.

• Bi-SST + E + H + TDA: Temporal dynamic attention

(TDA) is used to dynamically construct visual input to

the decoder.

• Bi-SST + E + H + TDA + CG: Context gate is used to

balance the attended event feature and contexts.

• Bi-SST + E + H + TDA + CG + Ranking: Joint ranking

is further applied in inference time.

Results. The reuslts of our methods and the baseline ap-

proach on the ActivityNet Captions validation split are pro-

vided in Tab. 1. We can see that, our 6 variants all outper-

form the baseline method with large margins.

Compared to the baseline SST + H, our bidirectional

model (Bi-SST + H) gives better performance when cap-

tioning 1000 proposals. This verifies that considering both

past and future event context also help improve describing

an event.

Combining both event clip features and context vec-

tors (Bi-SST+E+H) is better than event clip features (Bi-

SST+E) or context vectors (Bi-SST+H) alone. We mainly

refer to Meteor score for comparison, as it shows better con-

sistency with human judgments with a small number of ref-

erence sentences (in our case, only one reference sentence).

We notice there is slight inconsistency for other metrics,

which has also been observed by [45, 20]. This is caused

by the imperfection of sentence similarity measurement.
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Various people are seen
sitting in tubes and lead
into them pushing
themselves along and
riding down a snowy
mountain
More clips are shown of
people riding down the
mountain as well as
sitting at the bottom and
racing with others

The cameraman meets
the others at the bottom
walking around with their
tubes

A gymnast stands and
opens his arms

A person behind the
pommel horse takes
pictures to the gymnast

Then, the gymnast
performs pommel horse
while spinning his body

After, the gymnast stands
on his hands, turn and
jumps to land on the mat,
then walks

More clips are shown of
people surfing along the
water and moving with
the waves

The video leads into
several shots of people
riding surf boards along
the water

A man is seen speaking
to the camera and leads
into him riding down a
snowy hill

A man is seen speaking
to the camera and leads
into him riding down a
snowy hill

The man then begins to
ride down the river while
the camera captures his
movements

A man is seen standing in
a circle and throwing a
ball off into the distance

The man then begins to
run around the track and
jumps up and down on
the bars

The man then begins to
run around the track and
jumps up and down on
the bars

The man then throws the
ball down and hits the
ball around

The man then begins to
ride down the river while
the camera captures his
movements

The man then begins to
ride down the river while
the camera captures his
movements

A man is seen speaking
to the camera and leads
into him holding a
scraper and riding down
a snowy hill

A man is seen sitting on
a tube and looking off
into the distance

The man continues to
ride around the snow
while the camera follows
them from several angles

A man is seen standing
ready holding a set of
uneven bars and begins
performing a gymnastics
routine

He does a gymnastics
routine on the balance
beam

He does a gymnastics
routine on the balance
beam

The man then jumps off
the bar and ends by
jumping down

The man is then seen
riding along the water
and surfing with a surf
board

A man is seen speaking
to the camera and leads
into him riding a surf
board

GT Without Event With Event

..
..

..
..

..
..

(a)

(b)

(c)

Figure 4. Qualitative dense-captioning analysis for model without

or with event clip fusion. Note that we only show proposals with

maximum tIoU with the ground truths. (Best viewed in color)

Based on the results of Bi-SST+E+H+TDA, applying

attention mechanism instead of mean pooling to dynami-

cally fuse event clip features and context vectors further im-

proves all scores. This variant performs better as it can gen-

erates more semantic related word by attending on video

features at each decoding step. Combining context gating

function further boosts the performance with clear margins.

This supports that explicitly modeling the relative contri-

bution from event features and contexts in decoding time

help better describe the event. Using joint ranking at in-

ference time further improve the whole system, as it gives

more confident predictions on both event proposals and cor-

responding descriptions.

In Tab. 2, comparsion of our system with the state-of-

the-art method [20] is presented. Note that our approach

uses only C3D features and does not involve any extra data.

While totally comparable to Krishna et al. [20], our method

surpasses [20] with 100% performance gain. This strongly

supports the effectiveness of our proposed model.

Qualitative Analysis. For intuitively analyzing the effec-

tiveness of fusing event clip for dense captioning, we show

some cases in Fig. 4. The fusion mechanism allows the sys-

tem to pay more “attention” to current event while simulta-

neously referring to contexts, and thus can generate more

semantic-related sentences. In contrast, the system with-

out event clip fusion generally tends to make more seman-

tic mistakes, either incorrect (Fig. 4 (a) and (b)) or seman-
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Bi-SST + E + H + TDA + CG + Ranking

Figure 5. Meteor scores vs event proposal lengths.

tic ambiguous (Fig. 4 (c)). For example, when describing

video (c), by incorporating event clip features, the system is

more confident to say “The man is surfing with a surf board”

instead of simply saying “riding down the river.”

Fig. 5 shows how Meteor scores change as proposal

lengths vary from a few seconds to several minutes. We

can see that the performances of all methods degenerate

when describing very long proposals (> 60s). This sug-

gests that understanding long events and describing them

is still a challenging problem, as long events are usually

more complicated. Bi-SST+H works better than SST-H as

we combine both past and future context information. We

note that SST+H and Bi-SST+H both go down steeply as

proposals become longer. The reason is that it is still very

hard for LSTM to learn long-term dependency. Using only

hidden states to represent an event is thus quite suboptimal.

In contrast, fusing event features compensates such infor-

mation loss. All methods using “E” (event features) show

much better performance than their counterparts. Besides,

our model with joint ranking further improves the perfor-

mance of the whole system with large margins.

5. Conclusion

In this paper we identified and handled two challenges

on the task of dense video captioning, which are context

fusion and event representation. We proposed a novel bidi-

rectional proposal framework, namely, Bidirectional SST,

to encode both past and future contexts, with the motivation

that both past and future contexts help better localize the

current event. Building on this proposal module, we further

reused the proposal hidden states as context vectors and dy-

namically fused with event clip features to generate the vi-

sual representation. The extensive quantitative and qualita-

tive experimental results demonstrate the superiority of our

model in both localizing events and describing them.
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