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Abstract
Human motion prediction aims at generating future
frames of human motion based on an observed se-
quence of skeletons. Recent methods employ the
latest hidden states of a recurrent neural network
(RNN) to encode the historical skeletons, which
can only address short-term prediction. In this
work, we propose a motion context modeling by
summarizing the historical human motion with re-
spect to the current prediction. A modified high-
way unit (MHU) is proposed for efficiently elim-
inating motionless joints and estimating next pose
given the motion context. Furthermore, we enhance
the motion dynamic by minimizing the gram matrix
loss for long-term motion prediction. Experimental
results show that the proposed model can promis-
ingly forecast the human future movements, which
yields superior performances over related state-of-
the-art approaches. Moreover, specifying the mo-
tion context with the activity labels enables our
model to perform human motion transfer.

1 Introduction
Human motion prediction, serving as one of the most es-
sential parts of robotic intelligence, enables rapid and high-
fidelity reactions towards complex environment changes. For
example, a robot can effortlessly avoid route collision by fore-
casting the movement about surrounding subjects. Nowa-
days, with the development of the MOCAP devices, such
as Kinect, and the pose estimation algorithms [Yasin et al.,
2016; Tekin et al., 2017], the sequence of human skeletons
can be easily and accurately computed. It thus enables us to
predict future human motion by analyzing the observed skele-
ton sequences, which can further help human action analy-
sis/recognition, body pose estimation, and even human-robot
interactions.

The historical human skeleton sequence needs to be effec-
tively modeled for human motion prediction [Fragkiadaki et
∗Work done while Yongyi Tang was a Research Intern with Ten-

cent AI Lab.
†Corresponding authors.
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Figure 1: Human motion prediction on “walking”. Top: the ob-
served human motion sequence. Given the observed skeletons, the
goal of this paper is to generate future skeletons similar to the
ground-truth (the second row). Our method is able to well predict
both short-term and long-term skeletons maintaining good tempo-
ral dynamic, while other existing methods fail to generate satisfying
long-term skeletons. Better view in color.

al., 2015; Jain et al., 2016] and action recognition [Wang et
al., 2014; Liu et al., 2016]. Currently, one common strat-
egy is to use a recurrent neural network (RNN) as the en-
coder along the temporal domain [Fragkiadaki et al., 2015;
Ghosh et al., 2017; Martinez et al., 2017], driven from se-
quence to sequence learning [Sutskever et al., 2014], with the
last hidden state encoding the motion context. For the exist-
ing recurrent units such as long short-term memory (LSTM)
[Hochreiter and Schmidhuber, 1997] and gated recurrent unit
(GRU) [Cho et al., 2014], the hidden states encode the skele-
ton sequence and update at every time step. Although LSTM
and GRU are proposed to handle the long short-term depen-
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dencies, the historical information, especially the long term
one, cannot be well encoded with the updated hidden states
overwhelmed by the input at current step [Bahdanau et al.,
2014]. Such information loss makes the long-term human
motion prediction tend to converge to the mean pose or fail
to produce motion dynamic, as the results of LSTM-3LR
[Fragkiadaki et al., 2015] and Res-GRU [Martinez et al.,
2017] shown in Fig. 1. Moreover, the human joints of skele-
ton are treated equally for the motion prediction in the prior
works. Instead, the human motion can be viewed as the move-
ment of the joints of the skeleton, where not every joint par-
ticipates in the human pose evolutions. For the human activ-
ities, such as “walking” and “eating”, the subject may stand
still with the backbones motionless.

In order to make reliable future predictions, we model mo-
tion context by summarizing the historical human motion
skeleton sequence with respect to the current skeleton. Such
motion context can help to capture the human motion pat-
terns, i.e. the repeated patterns in “walking” and “eating”,
and ease the motion uncertainties, thus benefiting the long-
term predictions. By utilizing both the pose information of
the last frame and the summarized motion context, we pro-
pose a modified highway unit (MHU) to predict the future hu-
man skeleton. The MHU introduces a gate that can efficiently
filter the motionless joints at each generation and pay more at-
tentions on those with motion. Besides, in order to produce
consistent human motions and enhance the motion dynamic,
we introduce a gram matrix loss for minimization so as to
explicitly penalize the mean pose convergence and ease error
accumulation. These components enable our method to pre-
dict reliable long-term human motion as highlighted in the
last row of Fig. 1.

In addition, prior works are only able to predict one sin-
gle activity for a given pose sequence, i.e. predicting future
“walking” skeletons given the observed “walking” skeleton
sequence. However, in realistic scenario, more than one type
of activity may evolve given the observed human motion se-
quence. With our motion context modeling, we further ex-
ploit the ability of the proposed model on human motion
transfer, which generates specific types of motion sequence
given different action labels. As such, the human motion
sequence can be manipulated by the given action labels, re-
sulting in a smooth motion sequence with multiple activities,
which will be detailed in Sec. 4.

Our contributions are summarized as follows: 1) We pro-
pose to model the motion context by summarizing the histor-
ical skeleton sequence with respect to the current one. MHU
thereafter distinguishes the motion joints from the motionless
ones to make effectively long-term human motion prediction.
2) A gram matrix loss is proposed for enhancing motion dy-
namic, which enables our model to produce highly correlated
human motion in the temporal domain. 3) Our model can per-
form human motion transfer based on the motion context and
the specified activity categories.

2 Related Works
Human Motion Analysis. Human motion analysis is one
of the key problems in computer vision and robotics, and

hence has received much attention [Aggarwal and Cai, 1997].
Human motion can be obtained by motion capture systems
[Ionescu et al., 2014] and Kinect device and extracted from
videos [Brand and Hertzmann, 2000] and even static images
[Li and Chan, 2014; Yasin et al., 2016]. With the available
body poses, several structural models such as hierarchical re-
current neural networks [Du et al., 2015] and trust gates [Liu
et al., 2016] were proposed to address skeleton based action
recognition. By representing skeletons with the rotation ma-
trices, which forms a special orthogonal group SO(3), the re-
searches in [Vemulapalli et al., 2014] and [Huang et al., 2017]
developed group-based skeleton analysis for action recogni-
tion by using support vector machine and convolution neural
network, respectively.

Human Motion Prediction. Human motion prediction
aims to understand behaviors of a subject on the observed
sequences and to generate future body poses. Deep learn-
ing based approaches have outperformed conventional meth-
ods on skeleton-based problem such as 3D pose estimation
[Yasin et al., 2016] and action recognition [Hu et al., 2015;
Liu et al., 2016]. In this paper, we focus on human motion
prediction based on deep neural networks. Prior works try to
encode the observed information to latent variables and per-
form prediction as decoding by Restricted Boltzmann Ma-
chines (RBMs) [Taylor et al., 2007]. [Fragkiadaki et al.,
2015] introduce Encoder-Recurrent-Decoder networks that
learn the temporal dynamic of human motion by a long short-
term memory (LSTM) model. They designed a non-linear
transformation to encode pose feature and decode the output
of the LSTM. The history information passes throughout the
recurrent units to constrain human motion prediction. [Mar-
tinez et al., 2017] further extended this scheme by model-
ing the velocity of joints instead of directly estimating the
body pose, and employed single linear layer for pose fea-
tures encoding and hidden states decoding. They find that
the poses with zero-velocity achieve relatively less error on
mean angle distance, which demonstrates the efficiency of
the velocity modeling. To reduce the accumulated correla-
tion error, a dropout auto-encoder (DAE) was proposed by
[Ghosh et al., 2017]. Apart from these approaches, struc-
tural RNN proposed by [Jain et al., 2016] tries to capture the
spatio-temporal relationship of joints.

3 Proposed Model
3.1 Problem Formulation
Given an observed sequence of body poses {xt′}T ′

t′=1 in 3D
space, the goal of human motion prediction is to generate the
consecutive human motion {x̂t}Tt=1 close to the ground-truths
{xt}Tt=1. Following the prior works [Fragkiadaki et al., 2015;
Martinez et al., 2017] for human motion prediction, the axis-
angle representation of skeletons {xt′}T ′

t′=1 parameterizes a
rotation of each joint in a three-dimensional Euclidean space
by a rotation vector whose norm is the rotation angle.

Conventional RNN-based human motion prediction meth-
ods [Fragkiadaki et al., 2015; Jain et al., 2016; Martinez et
al., 2017] rely on the last hidden state ht−1 and predicted
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Figure 2: The architecture of our proposed model for human motion prediction. Each historical skeleton is first embedded into one semantic
space. At each time step, the motion context modeling summarizes the skeleton embeddings with respect to the last predicted skeleton.
Afterwards, MHU works on the motion context and the last estimated skeleton to yield the human motion at each time step.

skeleton x̂t:
x̂t+1 = RNN(x̂t,ht−1). (1)

The historical human skeletons are encoded by h0 for pre-
dicting the first skeleton x̂1. However, the failure cases in
long-term human motion prediction (as shown in Fig. 1) in-
dicate that using the final hidden state as the motion context
is not satisfactory to well capture the historical motion infor-
mation.

To address the above problems, we aim at designing a
model f equipped with motion context modeling to fully ex-
plore the properties of human motion sequences, which is fur-
ther formulated as:

x̂t+1 = f(x̂t, {xt
′
}T

′

t′=1). (2)
Our proposed model f directly accesses to the historical hu-
man skeletons {xt′}T ′

t′=1 at each step for prediction, which
enables us to yield a more representative motion context.
As such, the model can simply repeat the observed pattern
to get a reasonable prediction for periodic activities such as
“walking” and “eating”. For aperiodic activities, the encoded
motion context can still provide meaningful information of
historical activities (such as directions or the habit of move-
ment), and thus further reduce the search space for making
predictions.

3.2 Our Approach
As shown in Fig.2, the proposed model mainly consists of
two components: a skeleton embedding layer and a recurrent
prediction layer. The embedding layer can be regarded as an
encoder, and the recurrent prediction layer is thus denoted as
the decoder, which consists of two main components, namely
the motion context modeling and the modified highway unit
(MHU). These two components are coupled together, and this
enables the proposed framework to predict reliable long-term
human motions.

A multi-layer non-linear network is constructed to real-
ize the skeleton embedding layer, which projects the ob-
served skeletons {xt′}T ′

t′=1 into the semantic space yielding

{et′}T ′

t′=1. Specifically, we concatenate the output of a fully
connected layer he1 = We1x

t′ + be1 and its activated out-
put he2 = ReLU(he1), and finally preform embedding by
et

′
= We2[he1;he2] + be2.

During the prediction, the motion context is firstly sum-
marized from the skeleton embeddings with respect to the
last predicted skeleton. Afterwards, the MHU exploits the
relationships between the motion context and the predicted
skeleton to generate the human motion at each time step.

Motion Context Modeling
Motion context modeling aims at encoding the historical hu-
man motion, which can further boost the future skeleton pre-
diction. Existing methods model motion context simply by
LSTM or GRU, and the last hidden state is taken as mo-
tion context for human motion prediction [Fragkiadaki et al.,
2015; Martinez et al., 2017; Zimo et al., 2017] and action
recognition [Liu et al., 2016; Du et al., 2015]. However, the
last hidden state in RNN is usually dominated by the input
at the latest time step. Therefore, the previous information,
especially for the long-term one, is not effectively encoded
into the hidden state. While for future motion prediction, the
historical skeletons are believed to be helpful.

In this paper, we propose to use temporal attention mecha-
nism [Bahdanau et al., 2014] to summarize all the historical
skeletons with the respect to predicted one at each time step:

βt
′
= Wβ tanh(Uβvv

t−1 +Uβee
t′ + bβ), (3)

αt
′
=

exp(βt
′
)∑T ′

t′=1 exp(βt′)
, (4)

where vt−1 denotes the predicted skeleton at time t − 1. αt
′

denotes the attentive weight with respect to each historical
skeleton. The temporal attention mechanism directly works
on the skeleton embeddings, which can more effectively cap-
ture the relations between the predicted skeleton and histori-
cal motion. With the computed attentive weights, the motion
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context is thus computed by:

ht−1mc =
T ′∑
t′=1

αt
′
et

′
. (5)

The obtained motion context ht−1mc can selectively summa-
rize the historical skeleton information. The obtained motion
context presents no bias on short-term or long-term informa-
tion. Thus, ht−1mc can help produce more reliable long-term
predictions compared with the state-of-the-art methods which
directly use the last hidden state of traditional RNNs.

Modified Highway Unit
The human motion can be viewed as the movement of skele-
ton joints, where not every joint participates in pose evolu-
tions. For example, one subject mainly stands still with the
backbones presenting motionless in activities such as “phon-
ing” and “eating”. Therefore, the human motion is only trig-
gered by the activity-specific skeleton joints.

Based on these observations, we introduce an MHU in our
recurrent prediction layer as shown in Fig.2 in order to effi-
ciently model the skeleton joints that contain meaningful mo-
tion information. We introduce ReLU non-linearity in the Re-
current Highway Network proposed by [Zilly et al., 2016] for
both skeleton estimation and gate estimation. We additionally
drop the tanh activation in the vanilla RHN.

Given the current input skeleton representation xt and the
motion context ht−1mc from the last time step, our proposed
MHU is formulated as:

vt = Wvφ(Uvhh
t−1
mc + bv) +Uvxx

t + bvh, (6)

zt = σ(Wzφ(Uzxx
t + bz) + bzx), (7)

x̂t+1 = (1− zt)� vt + zt � xt, (8)
where � is element-wise multiplication, W, U and b are the
learned parameters, and φ and σ denote the rectified linear
unit and sigmoid function, respectively.

Note that zt ranges in [0,1] for gating the current skeleton
xt and the estimated next joints vt. The modeling of gate
state zt involves a non-linear transformation, which implic-
itly captures the spatial relations of xt. As such, MHU is
expected to focus on the joints with large motions, and con-
ducts partially updating in Eq.8 by the element-wise multipli-
cation. These non-linear operations within the MHU can help
explore spatial relations of skeleton joints.

3.3 Enhancing Motion Dynamics with Gram
Matrix Objective

In addition to model motion context for long-term prediction,
the transitions between skeletons should be addressed to gen-
erate dynamic human motion and prevent mean pose conver-
gence. To minimize the error of human motion prediction,
existing methods [Fragkiadaki et al., 2015; Jain et al., 2016;
Martinez et al., 2017] usually adopt mean square error (MSE)
as the objective function. However, the MSE constrains mod-
els to generate the human motion that stays around the center
of the ground-truth distribution, which are the mean poses.
Moreover, the MSE objective only treats each motion inde-
pendently which may cause motion inconsistency. Instead,

we propose to minimize the gram matrix between consecu-
tive motions, which is defined as follow:

Lgram =
1

T

T−1∑
t=1

∣∣∣∣G(x̂t, x̂t−1)−G(xt,xt−1)∣∣∣∣2
2
, (9)

where the gram matrix G(xt,xt−1) is defined as:

G(xt,xt−1) = [xt;xt−1][xt;xt−1]>, (10)

and [·; ·] denotes the concatenation of vectors.
On one hand, the correlation between skeleton joints is

represented in the gram matrix such that the spatial relation
among different skeleton joints can be further explored. On
the other hand, the temporal dynamic is captured by the cor-
relation between xt and xt+1, which enables our model to
enhance human motion along temporal axis. For the action
such as “walking”, the arms and legs move alternately. Such
spatial-temporal correlation represented in the gram matrix
can enable producing human-like walking motion. Thus both
short-term and long-term human motion predictions can be
improved.

4 Experiments
4.1 Experimental Settings
H3.6m Mocap Dataset for Human Motion Prediction.
We conducted our experiments of human motion prediction
on the H3.6m mocap Dataset [Ionescu et al., 2014], which
is the largest human motion dataset for 3D body pose anal-
ysis. It consists of 15 activities including periodic activities
like “walking” and non-periodic activities such as “discus-
sion” and “taking photo”, performed by seven different pro-
fessional actors. Recorded by a Vicon motion capture sys-
tem, the H3.6m dataset provides high quality 3D body joint
locations in the global coordinate sampled at 50 frames per
second (fps).

Data Representation and Preprocessing. For all our ex-
periments, we followed the same data setting in [Fragkiadaki
et al., 2015; Jain et al., 2016; Martinez et al., 2017]. The
motion sequence was down-sampled by 2 to 25 fps. And 5
subjects were selected for testing with the others for training.
The joint features were represented in exponential map [Gras-
sia, 1998] which is also known as the angle-axis representa-
tion. The three dimension feature of each joint represents
the rotation vector with respect to the parent joint predefined
in H3.6m dataset. All the features were normalized into the
range of [-1,1]. We did not use the label as additional infor-
mation except for the experiments of human motion transfer.

Training. Single layer of MHU with 1024 units was
adopted in all our experiments. Empirically, stacking more
layers of MHU did not help improve the performance. To
better capture human motion, all the activities were trained
together for prediction as a default setting. We used T ′ = 30
observed frames for embedding to estimate future T = 10
frames. We used stochastic gradient descent with the momen-
tum setting to 0.9. The learning rate was set to 0.05 decayed
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Figure 3: The comparison of mean pose convergence of the walking
activity. The ground-truth poses are shown in yellow. The dash
boxes highlight the converging motion sequence.

with factor of 0.95 for every 10,000 steps. And the gradient
was clipped to a maximum L2-norm of 5. Batch size of 80
was used throughout our experiments. Normally, the training
converged in around 20,000 steps.

4.2 Experimental Results
We first evaluate the ability of the proposed framework for
predicting human motion and made comparison with re-
lated recent state-of-the-art methods including ERD [Fragki-
adaki et al., 2015], LSTM-3LR [Jain et al., 2016] and Res-
GRU [Martinez et al., 2017]. We reproduced the results of
these methods. Please note that our reproduced results often
present better performance than that reported in their papers.
Following the evaluation of previous works, we converted
the representation of joints from angle-axis to angle of ro-
tation, and thereby measured the Euclidean distance between
the predicted joints and its ground-truth by:

D({xt}Tt=1, {x̂t}Tt=1) =

T∑
t=1

N∑
i=1

√
d2(αti, α̂

t
i) + d2(βti , β̂

t
i ) + d2(γti , γ̂

t
i ),

(11)

where d(a, b) = min{|a− b|, 2π − |a− b|}.
Interestingly, the research in [Martinez et al., 2017] found

that repeating the last body pose also gave a relative small er-
ror in the measurement of the Euclidean distance between the
ground-truth, which performed even better than ERD [Fragki-
adaki et al., 2015] and LSTM-3LR [Fragkiadaki et al., 2015].
One possible reason is that the human motion within the
dataset is slight for some activities. Therefore, simply re-
peating the last body pose can yield the reasonable objective
results. Another possible reason may be attributed to the eval-
uation metric, which is an Euclidean distance and can only
depict independent distance for each joint, and thus this ig-
nores the relations between joints. Thus even with a smaller
Euclidean distance, the motion prediction may not be plausi-
ble.

We compare our results with the existing methods and
the variants of our method. The first variant is using con-
ventional mean square loss as in [Martinez et al., 2017;

Walking to Direction to Walking

Walking to Sitting to Walking

Figure 4: The result of human motion transfer between two different
activities. The observed pose sequences are shown in purple, and the
predicted motion are shown in red and blue. Better view in color.

Fragkiadaki et al., 2015] and encoder-decoder framework
with MHU. We then replaced the MSE training loss with the
gram matrix loss in the second variant. The fist and second
variations are named as “MHU-MSE” and “MHU-Gram”, re-
spectively.

The overall human motion prediction result of all 15 ac-
tivities of H3.6m dataset via mean angle error is shown in
Table.1. It can be observed that our methods as well as
two different variants can outperform the competitors. More
specifically, the result shows that MHU-MSE performs well
in the short-term improvement of prediction especially from
160ms to 720ms. The reason can be attributed to that the
MHU can efficiently filter motionless joints and propagate in-
formation between two layers with the modified non-linearity.
For the very short-term prediction, the spatial information of
the body pose predominates the measurement. For longer
term prediction, the motion information is more important.
Therefore, only considering the spatial pose information can-
not well model the motion dynamic. As such MSE-Gram,
which targets at enhancing motion dynamic, performs better,
which achieves 1.82 on mean angle error at 1000ms. Finally,
by assembling the motion context modeling, our model can
achieve the best performance on both short-term and long-
term predictions.

In details, we show a part of the results in Table. 2 which
contains both short-term and long-term comparisons with the
compared methods. In most of the cases, our results are com-
petitive in short-term prediction, and clearly outperform the
baseline methods in long-term prediction. For the “walking”
activity, the objective evaluation of our result is close to that
of Res-GRU. However, by visualizing the motion in Fig. 3, it
seems that the results generated by LSTM-3LR method and
Res-GRU method converge to the mean body pose. On the
contrary, our method can resemble the “walking” behaviors
of the body pose, thus presenting the predicted motion with
highly dynamic.

4.3 Human Motion Transfer
As mentioned before, the long-term human motion is not de-
terministic and may alter according to subjective factors. For
example, while one is sitting, at any time he/she may sud-
denly stand up and walk around. Here, we try to simulate this
situation by modifying the hidden state of each decoder input
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Methods Short-term Long-term
80ms 160ms 240ms 320ms 400ms 480ms 560ms 640ms 720ms 800ms 880ms 960ms 1000ms

ERD [Fragkiadaki et al., 2015] 0.93 1.07 1.19 1.31 1.41 1.52 1.58 1.64 1.70 1.78 1.86 1.93 1.95
LSTM-3LR [Fragkiadaki et al., 2015] 0.87 0.93 1.06 1.19 1.30 1.41 1.49 1.55 1.62 1.70 1.79 1.86 1.89

Res-GRU [Martinez et al., 2017] 0.40 0.72 0.92 1.09 1.23 1.36 1.45 1.52 1.59 1.68 1.77 1.85 1.89
Zero-velocity 0.40 0.71 0.90 1.07 1.20 1.32 1.42 1.50 1.57 1.66 1.75 1.82 1.85
MHU-MSE 0.39 0.69 0.88 1.04 1.17 1.30 1.40 1.49 1.57 1.67 1.77 1.86 1.89
MHU-Gram 0.39 0.68 0.86 1.01 1.14 1.26 1.35 1.43 1.50 1.60 1.70 1.79 1.82

Ours 0.39 0.68 0.85 1.01 1.13 1.25 1.34 1.42 1.49 1.59 1.69 1.77 1.80

Table 1: Performance comparison between different methods in terms of both short-term and long-term human motion prediction of all 15
activities from H3.6m dataset via mean angle error. The best performance is highlighted in boldface.

Methods
Walking Greeting

Short-term Long-term Short-term Long-term
80ms 160ms 320ms 400ms 560ms 640ms 720ms 1000ms 80ms 160ms 320ms 400ms 560ms 640ms 720ms 1000ms

ERD [Fragkiadaki et al., 2015] 0.77 0.90 1.12 1.25 1.44 1.45 1.46 1.44 0.85 1.09 1.45 1.64 1.93 1.89 1.92 1.98
LSTM-3LR [Fragkiadaki et al., 2015] 0.73 0.81 1.05 1.18 1.34 1.36 1.37 1.36 0.80 0.99 1.37 1.54 1.81 1.76 1.79 1.85

Res-GRU [Martinez et al., 2017] 0.27 0.47 0.68 0.76 0.90 0.94 0.99 1.06 0.52 0.86 1.30 1.47 1.78 1.75 1.82 1.96
Zero-velocity 0.39 0.68 0.99 1.15 1.35 1.37 1.37 1.32 0.54 0.89 1.30 1.49 1.79 1.74 1.77 1.80

Ours 0.32 0.53 0.69 0.77 0.90 0.94 0.97 1.06 0.54 0.87 1.27 1.45 1.75 1.71 1.74 1.87

Methods
Walking Dog Discussion

Short-term Long-term Short-term Long-term
80ms 160ms 320ms 400ms 560ms 640ms 720ms 1000ms 80ms 160ms 320ms 400ms 560ms 640ms 720ms 1000ms

ERD [Fragkiadaki et al., 2015] 0.99 1.25 1.48 1.58 1.83 1.88 1.96 2.03 0.76 0.96 1.17 1.24 1.57 1.70 1.84 2.04
LSTM-3LR [Fragkiadaki et al., 2015] 0.91 1.07 1.39 1.53 1.81 1.85 1.90 2.00 0.71 0.84 1.02 1.11 1.49 1.62 1.76 1.99

Res-GRU [Martinez et al., 2017] 0.56 0.95 1.33 1.48 1.78 1.81 1.88 1.96 0.31 0.69 1.03 1.12 1.52 1.61 1.70 1.87
Zero-velocity 0.60 0.98 1.36 1.50 1.74 1.80 1.87 1.96 0.31 0.67 0.97 1.04 1.41 1.56 1.71 1.96

Ours 0.56 0.88 1.21 1.37 1.67 1.72 1.81 1.90 0.31 0.66 0.93 1.00 1.37 1.51 1.66 1.88

Methods
Posting Taking Photo

Short-term Long-term Short-term Long-term
80ms 160ms 320ms 400ms 560ms 640ms 720ms 1000ms 80ms 160ms 320ms 400ms 560ms 640ms 720ms 1000ms

ERD[Fragkiadaki et al., 2015] 1.13 1.20 1.59 1.78 1.86 2.03 2.09 2.59 0.70 0.78 0.97 1.09 1.20 1.23 1.27 1.37
LSTM-3LR[Fragkiadaki et al., 2015] 1.08 1.01 1.42 1.61 1.79 2.07 2.13 2.66 0.63 0.64 0.86 0.98 1.09 1.13 1.17 1.30

Res-GRU[Martinez et al., 2017] 0.41 0.84 1.53 1.81 2.06 2.21 2.24 2.53 0.29 0.58 0.90 1.04 1.17 1.23 1.29 1.47
Zero-velocity 0.28 0.57 1.13 1.37 1.81 2.14 2.23 2.78 0.25 0.51 0.79 0.92 1.03 1.06 1.13 1.27

Ours 0.33 0.64 1.22 1.47 1.82 2.11 2.17 2.51 0.27 0.54 0.84 0.96 1.04 1.08 1.14 1.35

Table 2: Performance comparison between different methods in terms of both short-term and long-term human motion prediction via mean
angle error for each individual activity from H3.6m dataset, including “walking”, “Greeting”, “Walking Dog”, “Discussion”,
“Posting” and “Taking Photo”. The best performance is highlighted in boldface.

with the embedded activity label different from the observed
activity.

Since on the H3.6m dataset, there is no ground-truth hu-
man motion sequence that contains two different activities,
we thus trained our model with the activity labels and feed a
specific label at the test time. More specifically, after process-
ing temporal attention procedure, we concatenated the hidden
state with embedded action label, which was fed into a non-
linear layer in order to construct the context representation
for the decoding.

We show four examples of human motion transfer in Fig. 4
including ”walking” to ”direction”, ”sitting” to ”walking”
and the inverses. By modifying the hidden states that en-
code the motion context of the subject, our method is able
to transfer1 human motion with smooth activity transitions.
In details, as shown in the third row of Fig. 4, the proposed
model manages to transfer human motion from ”walking” to
”sitting” and the inverse motion. This result shows that the
motion context encoded in the hidden states can be well ex-
tracted by the designed MHU to produce reliable human mo-
tion transfer.

1We use ’transfer’ here because there is no ground-truth se-
quence to be ’predicted’.

Posing

Taking photo

Figure 5: Failure cases of our human motion prediction method. The
ground-truths and our results are shown in yellow and red, respec-
tively.

4.4 Limitations
Fig. 5 illustrates some failure cases of our method, which also
happen for the existing methods. The main reason is that
these activities are of high uncertainty with different subjects.
Therefore, the observed information cannot provide enough
evidence for modeling and predicting.

5 Conclusion
In this paper, we have proposed a new model to predict long-
term human motions by exploring motion context and en-
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hancing motion dynamic. The proposed motion context sum-
marized the historical skeletons for providing fully observed
evidence in long-term prediction. To enhance motion dy-
namic, the gram matrix training loss is further incorporated
to capture the temporal transitions. The extensive results
demonstrate that our proposed model outperforms existing
methods especially for long-term motion prediction. More-
over, compared with other models, our model can perform
human motion transfer which makes motion prediction based
on the action command and alters the generated motion types
accordingly.
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