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Abstract— Recent research have shown the potential of using
convolutional neural networks (CNNs) to accomplish single image
dehazing. In this paper, we take one step further to explore the
possibility of exploiting a network to perform haze removal for
videos. Unlike single image dehazing, video-based approaches
can take advantage of the abundant information that exists
across neighboring frames. In this paper, assuming that a
scene point yields highly correlated transmission values between
adjacent video frames, we develop a deep learning solution for
video dehazing, where a CNN is trained end-to-end to learn
how to accumulate information across frames for transmission
estimation. The estimated transmission map is subsequently used
to recover a haze-free frame via atmospheric scattering model.
In addition, as the semantic information of a scene provides a
strong prior for image restoration, we propose to incorporate
global semantic priors as input to regularize the transmission
maps so that the estimated maps can be smooth in the regions
of the same object and only discontinuous across the boundaries
of different objects. To train this network, we generate a dataset
consisted of synthetic hazy and haze-free videos for supervision
based on the NYU depth dataset. We show that the features
learned from this dataset are capable of removing haze that
arises in outdoor scenes in a wide range of videos. Extensive
experiments demonstrate that the proposed algorithm performs
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favorably against the state-of-the-art methods on both synthetic
and real-world videos.

Index Terms— Video dehazing, defogging, transmission map,
convolutional neural network.

I. INTRODUCTION

OUTDOOR images and videos often suffer from limited
visibility due to haze, fog, smoke, and other small

particles in the air that scatter the light in the atmosp-
here [1]–[5]. Haze has two effects on the captured videos:
it attenuates the signal of the viewed scene, and it introduces an
additive component to the image, termed the atmospheric light
(the color of a scene point at infinity). The image degradation
caused by haze increases with the distance from the camera,
since the scene radiance decreases and the atmospheric light
magnitude increases. Thus, a single hazy image or frame can
be modeled as a per-pixel combination of a haze-free image,
scene transmission map and the global atmospheric light as
follow [6], [7],

I(x) = J(x)t (x) + A(1 − t (x)), (1)

where I(x) and J(x) are the observed hazy image and the
clear scene radiance, A is the global atmospheric light, and
t (x) is the scene transmission describing the portion of light
that is not scattered and reaches the camera sensors.

Our goal is to recover haze-free frames and corresponding
transmission maps. This is an ill-posed problem since there
are at least three unknowns per pixel, with inherent ambiguity
between haze and object radiance [8]. To handle this highly
under-constrained problem, numerous haze removal methods
have been proposed [9]–[15] in recent years with significant
advancements. Some previous works use additional informa-
tion such as more images, while others assumed an image
prior to solve the problem from a single image [16]–[19].

The most successful video dehazing approaches use infor-
mation from neighboring frames to estimate transmission maps
from the input video [20], taking advantage of a hazy video is
temporally coherent and thus the transmissions of an object
are similar between adjacent image frames. Based on this
assumption, one can design the temporal coherence constraint
and add it to the loss costs. Then, the optimal transmissions
for each frame can be obtained by minimizing the overall
cost [20]. One of the main challenges associated with aggre-
gating information across multiple frames in previous work is
that the consecutive hazy frames must be aligned. This can be
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Fig. 1. Video dehazing comparison according to temporal consistency. The first row displays two consecutive hazy input frames and the zoom-in regions.
The second and third rows show the dehazed results generated by the method of Zhu et al. [23] and DCPDN [24], respectively. The zoom-in regions in these
two rows show that the dehazed patterns by the single image dehazing methods [24], [25] are of different appearances between the consecutive frames, which
creates flicker artifacts. The last row shows the dehazed results by our VDHNet. As shown, the proposed VDHNet maintains the same appearance of the
patterns. (a) Frame t . (d) Frame t + 1.

done by using optical flow [21], [22]. However, warping-based
alignment is not robust around dis-occlusions and areas with
low texture, and often yields warping artifacts.

Recently, great progress has been achieved by applying deep
convolutional neural networks (CNNs) to image processing
tasks. This kind of tasks includes image denosing [26], super-
resolution [27], style transferring [28], and so on. A natural
way to extend image processing techniques to videos is
to perform a certain image transformation frame by frame.
However, this scheme inevitably brings temporal inconsis-
tencies and thus causes severe flicker artifacts. The second
and third rows in Figure 1 show the dehazed results by
directly applying the learning based image dehazing methods
of [23] and [24] to videos, respectively. It can be observed
that the zoom-in content marked by red and green rectangles
have different appearances between two consecutive frames,
therefore creating flicker artifacts. The reason is that slight
variations between adjacent video frames may be amplified by
the frame-based network and thus result in obviously different
dehazed frames. In the existing literature, one solution to
retain temporal coherence after video transformation is to
explicitly consider temporal consistency during the frame gen-
eration or optimization process [29]. While effective, they are
case-specific methods and thus cannot be easily generalized to
other problems. Among them, the method of Zhang et al. [29]
is specifically designed for video dehazing. However, it relies
on time-consuming optimization about optical flow estimation.

Considering the efficacy of deep networks on image recov-
ering tasks, a natural thinking will be whether CNNs can be
adapted to video dehazing tasks by including temporal consis-
tency [30]–[32]. Inspired by the recent work [33], [34] which
show that stacked consecutive frames could model temporal
information, we consider recovering clear videos by using
stacked consecutive frames as input in our proposed network.
In this paper, we testify this idea on the problem of video
dehazing. We demonstrate that a feed-forward network cannot
only capture content information in the spatial domain, but
also encourage consistency in the temporal domain. We also
present dehazed results with and without alignment before
feeding the stacked frames into the network. We show that
using the encoder-decoder network with dilated convolution
and skip connections can achieve high-quality results with-
out any alignment at all, which makes our approach highly
efficient and robust to scene types.

In addition, we introduce a novel semantic segmentation
branch which uses semantic information to provide additional
guidance for inferring transmission maps. Semantic clues have
seen success in other low-level applications, e.g. image deblur-
ring [35], image super-resolution [36] and single image dehaz-
ing [37]. Here we propose a new convolutional neural network
that learns the correlation between semantic segmentations
and transmission maps from training samples. If the semantic
segmentation of the scene is known, transmission map within
the same object should be smooth but the transmission across
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the boundary needs not be smooth, such constraints facilitate
accurate transmission estimation. An example of dehazed
results of our method is shown in the last row of Figure 1,
from which we can see that the dehazed results have vivid
color information and no more flicker artifacts.

Our work makes three-fold technical contributions:
• A novel haze removal method for videos is proposed,

which is solely based on a feed-forward convolutional
neural network that exploits global semantic information
for video dehazing.

• We demonstrate that a feed-forward convolutional neural
network only taking a short stack of neighboring video
frames can not only dehaze each video frame well,
but also maintain the temporal consistency without any
alignment.

• To train the deep network, we create a hazy video dataset
using the image sequence and the corresponding depth
map from the NYU depth dataset [38]. We compare
qualitatively to real videos previously used for video
dehazing, and quantitatively with a synthesized dataset
with ground truth.

In this paper, we extend our preliminary work [39] in
four aspects. First, we investigate the effectiveness of the
proposed network with and without using alignment before
feeding the consecutive frames into the network (Section III).
Second, we exploit the scene semantic information as global
priors to better estimate the transmissions for video dehazing
(Section III). Third, we add skip connections and dilated
convolution in the network and show their better performance
for dehazing (Section III). Lastly, we present more technical
details, performance evaluation, and analysis in Section V.

II. RELATED WORK

There exist three main approaches for dehazing: clear image
priors based methods, approaches that rely on multi-image
aggregation or fusion, and CNNs based methods.

A. Dehaze Using Priors

Most existing single-image dehazing approaches [6], [23]
jointly estimate a transmission map and the underlying haze-
free image via designing clear image priors [40], [41]. For
example, Tan et al. [42], [43] propose dehazing methods
based on two observations. One is that clear images have
more contrast than hazy images; the other one is that the
variations of atmospheric light, which mainly depends on
the distance of objects to the viewer, tend to be smooth.
He et al. [6] propose a single image dehazing method based on
the statistical observation of the dark channel, which allows a
rough estimation of the transmission map. Then, they use the
expensive matting strategy to refine the final transmission map.
Zhu et al. [23] find that the difference between brightness and
saturation in a clear image should be very small. Therefore,
they propose a new color attenuation prior based on this
observation for haze removal from a single input hazy image.
Recently, Berman et al. [8] introduce a non-local method
for single image dehazing. This approach is based on the
assumption that an image can be faithfully represented with
just a few hundreds of distinct colors.

All of the above approaches strongly rely on the accuracy
of the assumed image priors, thus may perform poorly when
the hand-crafted priors are insufficient to describe real data.
As a result, these approaches tend to be more fragile than
aggregation-based methods [17], and often introduce undesir-
able artifacts such as amplified noises.

B. Multi-Image Aggregation/Video Dehazing

Multi-image aggregation methods directly combine multiple
images in either spatial or other domains (e.g., chromatic,
luminance and saliency) without solving any inverse prob-
lem by retaining only the most useful features. Most exist-
ing works merge multiple low-quality images into the final
result [1], [17], [20]. Kim et al. [20] assume that a scene point
yields highly correlated transmission values between adjacent
image frames, then add the temporal coherence cost to the
contrast cost and the truncation loss cost to define the overall
cost function. However, the pixel-level processing increases
the computational complexity, therefore, may not be suitable
for handling videos. Choi et al. [44] first make use of measur-
able deviations from statistical regularities observed in natural
foggy and fog-free images to predict fog density, then develop
a referenceless perceptual image defogging algorithm based on
estimated fog density. Zhang et al. [29] first dehaze videos
frame by frame, and then use optical flow to improve the
temporal coherence based on Markov Random Field (MRF).

However, all the above approaches have explicit formula-
tions on how to fuse multiple images. In this work, we instead
adopt a data-driven approach to learn how multiple images
should be aggregated to generate transmission maps.

C. Data-Driven Approaches

Recently, CNNs have been applied to achieve leading results
on a wide variety of reconstruction problems. These methods
tend to work best when large training datasets are easily
constructed [45], [46]. Such as image denoising [26], image
deraining [47], [48], and super-resolution [27]. However, these
approaches address a different problem, with its own set of
challenges. In this work we focus on video dehazing, where
neighboring hazy frames can provide abundant information for
transmission map estimation.

CNNs have also been used for single image dehazing based
on synthetic training data [49]. Unlike traditional methods
that use hand-crafted priors to estimate the transmission map,
Ren et al. [50] first use a coarse-scale CNN to extract a holistic
transmission map, then propose a fine-scale CNN to refine
the output from coarse-scale CNN. Cai et al. [51] present a
DehazeNet and a Bilateral Rectified Linear Unit (BReLU) for
transmission estimation. Recent AOD-Net [52] bypasses the
transmission estimation step by introducing a new variable
K(x) which integrates both transmission t (x) and atmospheric
light A. However, these algorithms focus on static image
dehazing and inevitably yield flickering artifacts due to the
lack of temporal coherence when applied to video dehazing.
Li et al. [3] extend the AOD-Net and propose a EVD-Net
for video dehazing by considering the temporal coherence
between neighboring video frames. This method effectively
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Fig. 2. Our proposed VDHNet. The proposed encoder-decoder style architecture that takes in five consecutive hazy frames stack and produces central three
transmission maps. We use the features of semantic information to better estimate the transmission maps.

maintains the coherence of consecutive frames, but tends to
remain some haze in the dehazed results.

D. Semantic Segmentation

Semantic segmentation aims to cluster image pixels
of the same object class with assigned labels. Numerous
recent methods use semantic segmentation to resolve image
deblurring [35], super-resolution [36] and single-image
dehazing [37].

In our experiments, we show that multi-frame transmission
maps estimation and the temporal consistency can be simulta-
neously learned by leveraging multiple video frames and our
proposed deep network, which avoids computing optical flows
in the inference stage and thus enables real-time dehazing
for videos. In addition, we show that semantic segmenta-
tion provide informative priors for estimating transmission
maps.

III. OUR METHOD

In this section, we train an end-to-end system for video
dehazing, where the input is a stack of five neighboring
frames and the output are the estimated transmission maps of
central three frames in the stack. The estimated transmission
maps are subsequently used to recover a haze-free video via
atmospheric scattering model. We use the stacked frames with
and without alignment before feeding the frames into the
network. In addition, we exploit the semantic information from
a semantic segmentation network [53] as the global semantic
priors within the deep network. In the following, we first
present our neural network architecture, and then describe a
number of experiments for evaluating its effectiveness and
comparing with existing dehazing methods [3], [6], [24],
[51], [52], [54], [55]. The key advantage of our method
is the allowance of lessening the requirements for accurate
alignment, a fragile component of prior work, but implicitly
enforces the temporal coherence of estimated transmission
maps of neighboring frames.

A. Network Architecture

We use an encoder-decoder style network, which has been
shown to produce good results for a number of generative
tasks.

Fusion Strategy: To keep the temporal coherence of neigh-
boring transmission maps, we use two different strategies to
fuse consecutive frames. The input of the network is five con-
secutive frames ( ft−2, ft−1, ft , ft+1 and ft+2) with different
fusion strategies. Note that any number of past and future
frames can be accommodated in the input layer. In order to use
more than one forward- and backward-frame, the architectures
in Figure 2 can be directly extended by fusing more frames
according to channel dimension.

1) Fusion Without Alignment: First, we perform an early
fusion of neighboring hazy frames by concatenating five
consecutive images in the input layer as shown in Figure 2.
Then, all the five concatenated frames are fed into the first
dilated convolutional layer without any alignment at all, rely-
ing on the network to extract spatial and temporal information
through a series of dilated convolutional layers. The output
of the network is the central three transmission maps of
the neighboring five hazy images. This makes the network
significantly faster since alignment usually dominates running
time in multi-frame aggregation methods. We refer to this
network as VideoDehazeNet, or VDHNet.

2) Fusion With Alignment: Then, we conduct a fusion strat-
egy by using alignment before feeding the consecutive frames
into the network. We use optical flow [56] to align stacked
frames, which is time-consuming and tend to introduce addi-
tional warping artifacts [21], but allows pixels to be aggregated
more easily by removing the spatial variance of corresponding
features. Let ft be the target frame, ft−2, ft−1, ft+1 and ft+2
are the frames need to be warped. We first estimate optical
flows between each frame and the target, and then proceed
to interpolate the set of consistent pixels [57]. The wrapped
frames are concatenated and then feed to the encoder-decoder
network. Different from the fusion strategy without alignment,
the output of the network is the central transmission map
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TABLE I

SPECIFICATIONS OF THE PROPOSED VDHNET MODEL. AFTER EACH CONVOLUTIONAL AND DECONVLUTIONAL LAYER, EXCEPT THE LAST ONE,
THERE IS A RECTIFIED LINEAR UNIT. WE PAD ALL CONVOLUTIONAL LAYERS WITH ZEROS SUCH THAT THE OUTPUT SIZE IS THE

SAME AS THE INPUT SIZE WHEN USING A STRIDE OF 1. ALL OUTPUT SIZES REFER THE ORIGINAL IMAGE

WIDTH W AND HEIGHT H, AS THE MODEL CAN PROCESS IMAGES OF ANY RESOLUTION

(i.e., transmission of frame ft ) of the neighboring hazy images
in this section. We refer to the network as VDHNet+alignment.

Both the training losses of the two fusion strategies are the
MSE to the synthetic ground truth transmission maps as

L(ti (x), t∗i (x)) = 1

pq

p∑

v=1

q∑

f =1

||tv, f (x) − t∗v, f (x)||2, (2)

where f is the frame index and v denotes the video index,
p and q is the number of training videos and frames in each
video, respectively. Both networks consist of three types of
layers: down-convolutional layers, that compress the spatial
resolution of the features while increasing the spatial sup-
port of subsequent layers; the up-convolutional layers, i.e.,
deconvolutional layers, that increase the spatial resolution; and
convolutional layers. We use convolutions after both down-
convolutional and deconvolution layers to further sharpen the
activation results. Note that we use dilated convolution in all
the convolutional layers.

a) Dilated convolution: For haze removal task, contex-
tual information from an input image is demonstrated to be
useful for automatically identifying and removing the haze.
The dilated convolution [58] weights pixels with a step size
of the dilated factor, and thus increases its receptive field
without losing resolution. Thus, we propose a contextualized
dilated network to aggregate context information for learning
the haze relevant features since it provides an increasingly
larger receptive field for the following layers. We use the
same dilated factors in each layer in the proposed network.
Specifically, the dilated factor is 2 in all the layers. Please
refer to Table I for detailed configurations of the network.

b) Skip connection: We also use the skip links to guide
the estimation of transmission maps. We note that the encoder

process removes the details but preserves the main structures
from the input images while decoder process concatenates
the features from encoder process and the features from the
shallow layers (whose features contain edges and finer details
information) to generate more useful features for transmission
estimation. The skip link is added on every scale to utilize
the feature maps in the encoder and help maintain the details
from the encoders.

c) Global semantic prior: We propose to utilize the
semantic segmentation information as a global prior for video
dehazing. Ideally, the transmission map should be smooth
in the regions of the same object and discontinuous across
the boundaries of different objects. Therefore, we expect the
estimated transmission map to be smooth inside the same
object, and discontinuous only along depth edges. As such,
we propose a new semantic information branch by using
the RefineNet [53]. Since the RefineNet learns rich semantic
representations for input images, it is important to resolve the
ambiguity in edge and object boundary in transmission maps.
Thus, given the consecutive frames, we first use the semantic
segmentation network [53] to extract the semantic labels.
We then extract semantic features from the probability maps
of the semantic labels using an additional convolutional layer
as shown in Figure 2. Finally, we concatenate the semantic
features with the features of hazy frames as the input to the
first decoder block.

Here we demonstrate the robustness of the seman-
tic segmentation network [53]. Given a haze-free image
in Figure 3(a), we use different medium extinction coefficient
β to synthesize images with different haze concentration.
As shown in the second row of Figure 3(b)-(e), all the
segmentations estimated by the RefineNet [53] are similar
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Fig. 3. Semantic segmentation by the Refinenet [53]. Top: Clear image and synthetic hazy images with different medium extinction coefficient β.
Bottom: Semantic segmentations estimated by the Refinenet [53]. All of these segmentations estimated by the Refinenet [53] are similar for different haze
concentrations. (a) Haze-free. (b) β = 0.6. (c) β = 0.8. (d) β = 1.0. (e) β = 1.2.

for different haze concentration images. We set the size of
semantic segmentations as 1/8 of the input hazy frames since
low-resolution images could mitigate the mismatch of edges
between segmentations and hazy frames. Therefore, there
exists a total of 576-channel (512-channel features of RGB
images and 64-channel features of semantic probabilities) fea-
tures before the first up-convolutional layer. These 576-channel
features are then up-sampled by 2× through a deconvolutional
layer. Figure 2 shows an overview of our video dehazing
network. The semantic labels encode the essential appearance
information and serve as a strong global prior for reconstruct-
ing the transmission maps. Note that we use the models of
“RefineNet-NYUD” and “RefineNet-Cityscapes” to segment
the indoor and outdoor images, respectively.

With the designed VDHNet, we estimate transmission maps
directly from input hazy fames. After estimating the transmis-
sion maps for the inputted video frames, we use the method
in Section IV to compute atmospheric light and recover
final dehazed frames based on the atmospheric scattering
model (1).

B. Implementation Details

During training we use a batch size of 5, and patch size
of 15 × 256 × 256, where 15 is the total number of chan-
nels stacked from the crops of 5 consecutive video frames.
We observed that a patch size of 256 was sufficient to provide
enough overlapping content in the stack even if the frames
are not aligned, which has also been reported in [21]. We
use ADAM for optimization, and initialize the learning rate
as 0.00001. For all the results reported in the paper we train
the network for 100,000 iterations, which takes about 80 hours
on an NVidia K80 GPU. Default values of β1 and β2 are used,
which are 0.9 and 0.999 respectively, and we set weight decay
to 0.00001. Since our approach dehazes frames in a single
forward pass, it is computationally very efficient. Using an
NVidia K80 GPU, we can process three 640 × 480 frames
within 0.2s. Previous approaches took on average 26s [6]
and 3s [54] per frame on CPUs. The recent video dehazing
method [55] takes more than 100s for each frame.

C. Training Dataset

Generating realistic training data is a major challenge for
video dehazing task in which ground truth data cannot be
easily collected [59]. To train our deep network, we need to
generate a dataset with synthesized hazy videos and their cor-
responding transmission maps and haze-free videos. Although
we can use the state-of-the-art method [60] to add synthetic
haze to clear outdoor scenes, we found the synthesized indoor
hazy images also generalize well to outdoor scenes [50].
Therefore, we use the NYU Depth dataset [38] to synthesize
training data in this paper. The NYU Depth dataset [38] con-
tains 587 video clips and corresponding depth values. We ran-
domly sample 100 clean video clips and the corresponding
depth maps to construct the training set. Given a clear frame
J(x) and the ground truth depth d(x), we synthesize a
hazy image using the physical model (1). We generate the
random atmospheric light A = [k, k, k], where k ∈ [0.8 1.0].
We synthesize transmission map for each frame based on the
ground truth depth map d(x),

t (x) = e−βd(x). (3)

Mathematically, β and depth d(x) in (3) have equal effects
on the generated transmission map. We sample four random
β ∈ [0.5 1.5] in (3) for every video clip. Therefore, we have
400 hazy videos and the corresponding haze-free videos
(100 videos × 4 medium extinction coefficients β) in the
training set. Examples of the dataset are shown in Figure 4.

IV. VIDEO DEHAZING WITH VDHNET

In addition to transmission maps t (x) that is learned from
the proposed VDHNet, we need to estimate the atmospheric
light A for each frame in order to recover the clear video
according to (1). We compute A from the estimated transmis-
sion map as like in [50] and [54] but with the consideration of
smoothness. Given a single frame, we estimate the atmosphere
light A by giving a threshold tthre,

I(x) = A, t (x) < tthre. (4)

According to (4), we select 0.1% darkest pixels in a transmis-
sion map t (x). These pixels have the most haze concentration.
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Fig. 4. Synthetic hazy videos for training. The top row is the haze-free frames of two videos from the NYU Depth dataset [38], and the bottom two rows
are our synthetic hazy frames with different haze thickness.

TABLE II

AVERAGE MSE OF THE ESTIMATED TRANSMISSION MAPS

ON THE 5 SYNTHETIC VIDEOS AND THE AVERAGE

RUNNING TIME OF EACH FRAME

Among these pixels, the one with the highest intensity in the
corresponding hazy image I is selected as the atmospheric
light. But in addition, we use the average value of the estimated
three consecutive lights as the final atmospheric light in our
experiment to maintain the smoothness.

After the atmospheric light A and the scene transmission
map t (x) of each frame are estimated by the proposed
VDHNet, we recover the haze-free frames by reversing the
model (1).

V. EXPERIMENTAL RESULTS

In this section, we conduct a series of experiments to
evaluate the effectiveness of the learned model.

A. Alignment

We first compare the performances of two different fusion
strategies with and without alignment in our VDHNet. We use
5 synthetic video clips to test the accuracy of transmission
estimation. As shown in Table II, both two fusion strategies
have similar transmission estimation accuracy. In this paper,
we choose the VDHNet without alignment as the default con-
figuration since these two networks only have 0.0004 distinc-
tions according to MSE of the estimated transmission maps.
In addition, the network without alignment makes the VDHNet
significantly faster since alignment usually dominates running
time as shown in Table II. The average running time of the
network with alignment is 35.94s. In contrast, the average

running time of the fusion strategy without alignment is
only 0.12s. Therefore, all the results reported in this work
are based on the VDHNet without using alignment.

B. Effectiveness of the Skip Links

The skip connections act as a guidance operation which
concatenates the different scale features in the VDHNet.
Without the skip links, the network are not able to learn
the features with fine details for image dehazing, which
accordingly affects the details estimated in the dehazed results
(see Figure 5(b)).

We note that the features for early layers usually contains
finer details. Thus, we adopt skip links to use these features
from shallow layers for the details estimation of transmis-
sion maps. Compare with the network without skip links
in Figure 5(b), our network with skip links generates much
better results with finer details as shown in Figure 5(d).

C. Effectiveness of the Dilated Convolutions

Contextual information from an input degraded image has
bee demonstrated to be useful for automatically image recov-
ering [61]. Thus, we exploit a dilated network to aggregate
context information for learning the haze-relevant features,
which provides an increasingly larger receptive field for the
following layers.

In Figure 5(c), we show the result generated by the network
without using dilated convolutions. Note that the color of the
building in the red rectangle tends to be darker than it should
be. In contrast, the network with dilated convolution yields
better visual result as shown in Figure 5(e).

To further show the effectiveness of the proposed dilated
convolution layers and skip connections, we show the quanti-
tative results with different configurations in Table III. As can
be seen, our network with skip connection and dilation con-
volutions could generate better results according to PSNR on
the synthetic videos.
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Fig. 5. Visual comparison using different configurations. (a) Hazy input. (b) and (c) show the results without skip connections and dilation convolution
layers, respectively. (d) Our result.

TABLE III

AVERAGE PSNR OF THE RECOVERED IMAGES ON THE 5 SYNTHETIC HAZY VIDEOS

Fig. 6. Effectiveness of semantic segmentation for transmission map estimation. (a) Hazy frames. (b) Estimated transmission maps by the VDHNet without
segmentation. (d) Estimated transmission maps with the semantic information in (c). (e) Ground-truth transmission maps. As shown, our estimated transmission
maps are smooth in the same object regions and only discontinuous across the boundaries of different objects.

D. Effectiveness of Semantic Segmentation

Semantic segmentation improves video dehazing in multiple
ways as it is used to help estimate transmission maps from
which the haze-free frames are estimated. First, it provides
region information about object boundaries. Second, as dif-
ferent objects have different depth maps, semantic segmenta-
tions are used to constrain transmission maps estimation of
each region. As shown in the first row of Figure 6(b), the
estimated transmission map has some extraneous edges in the
“sofa” region when the semantic segmentation is not used.
In contrast, the semantic information in (c) helps generate
accurate transmission map as shown in Figure 6(d). The
estimated transmission is smooth inside the same object, and
discontinuous only along depth edges. The quantitative results

in Table III also demonstrate the effectiveness of the proposed
semantic segmentation branch.

E. Temporal Smoothness

In this section, we use the temporal error Etemporal [28]
to evaluate the temporal smoothness of the dehazed videos by
different models and compare with the state-of-the-art methods
of [3], [51], and [52]. Table V lists the temporal errors of
five different models on the testing videos synthesized by
the NYU-Depth dataset. It shows that the proposed VDHNet
achieves the smallest temporal error, the video dehazing model
EVD-Net follows, and the DCPDN [24] turns out to be least
temporally coherent.
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TABLE IV

AVERAGE PSNR AND SSIM OF DEHAZED RESULTS ON THE 20 SYNTHETIC VIDEOS

TABLE V

TEMPORAL ERRORS OF THREE DIFFERENT METHODS ON 5 TESTING VIDEOS

Fig. 7. Dehazed results (odd rows) and estimated transmission maps (even rows) on our synthetic videos. (a) Input hazy frames. (b) Ground-truth, (c)
He et al. [6], (d) Chen et al. [55], (e) AOD-Net [52] and (g) Our VDHNet. Both single image dehazing method [6] and the recent video dehazing method [55]
tend to over-estimate haze concentration and result in dark results. In contrast, our approach performs better than the state-of-the-art methods.

F. Quantitative Evaluation
In this section, we compare our proposed VDHNet with the

state-of-the-art single image dehazing methods of He et al. [6],
Ren et al. [50], Cai et al. [51] and AOD-Net [52], and compare
with the recent video dehazing methods of Chen et al. [55]
and EVD-Net [3]. For quantitative performance evaluation,
we construct a new testing hazy video dataset. We select

20 video clips and their depth maps from the NYU Depth
dataset [38] (different from those that used for training) to
synthesize 20 transmission map sequence and corresponding
hazy videos. The results of single image dehazing methods
of [6] and [50]–[52] and the video dehazing approach [55]
are from the authors’ implementations and we used the hand-
tuned parameters to produce the best possible results. For the
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Fig. 8. Dehazed results (odd rows) and estimated transmission maps (even rows) on our synthetic videos. (a) Input hazy frames. (b) Ground-truth, (c)
Cai et al. [51], (d) Ren et al. [50], (e) EVD-Net [3] and (f) Our VDHNet method. The CNNs-based methods [51] and [50] tend to transfer extraneous textures
to the estimated transmission maps. In contrast, our approach performs better than the state-of-the-art methods.

video dehazing method [3], we re-train the EVD-Net using
the same training set in our work.

Figure 7 shows some dehazed frames by the methods
[6], [52], and [55]. The estimated transmission maps by
He et al. [6] are overestimated in some slight hazy regions.
Therefore, the dehazed results tend to be darker than the
ground truth images in some regions, e.g., the ceiling
in Figure 7(c). We note that the dehazed results in Figure 7(d)
by the video dehazing method [55] are similar to those by
He et al. [6] in Figure 3(c) since the method [55] also use
the dark channel prior. The final dehazed frames are darker
than the ground truth in Figure 7(b). The dehazed results
by the AOD-Net still have some remaining haze as shown
in Figure 7(e). Figure 7(f) shows the estimated transmission
maps and the final recovered images by the proposed VDHNet.
Overall, the dehazed results by the proposed algorithm have
higher visual quality and fewer color distortions.

In addition, we also compare our algorithm with the
learning-based methods [3], [50], [51] in Figure 8. As shown
in Figure 8(c) and (d), the methods [51] and [50] are likely to

transfer extraneous textures to the transmission map, thereby
introducing unnecessary details to the estimated transmission
maps. For example, the estimated maps by [51] and [50]
contain much texture details in the door area which have the
same depth. Although the EVD-Net bypass the transmission
map estimation, the dehazed results in Figure 8(e) still have
some remaining haze. In contrast, the transmission maps
generated by our VDHNet have the similar values in the same
depth region. The qualitative results are also reflected by the
quantitative PSNR and SSIM metrics shown in Table IV.

G. Real Videos

Although our proposed VDHNet is trained on synthetic
indoor videos, we note that it can be applied to outdoor
images as well since we could increase the haze concen-
tration by adjusting the value of the medium extinction
coefficient β in (3). Therefore, our synthesized transmission
maps cover the range of values in real transmission maps as
illustrated in [50].



REN et al.: DEEP VIDEO DEHAZING WITH SEMANTIC SEGMENTATION 1905

Fig. 9. Dehazed results on the crossroad video. (a) Input hazy image. (b) He et al. [16], (c) Zhu et al. [23], (d) Cai et al. [51], (e) Chen et al. [55],
(f) Ren and Cao [39], (g) EVD-Net [3] and (h) Our VDHNet method. The method of He et al. [16] tends to over-estimate the transmission and generate
darker results than our algorithm, while the dehazed results by [3], [23], [51], and [55] still have some remaining haze.

Fig. 10. Dehazed results on the riverside video. (a) Input hazy image. (b) Ren et al. [50], (c) Chen et al. [55], (d) AOD-Net [52], (e) DCPDN [24],
(f) EVD-Net [3] and (g) Our VDHNet method. The methods of [24] and [55] tend to generate dark regions in the dehazed results.

We evaluate the proposed algorithm against the state-of-
the-art image and video dehazing methods He et al. [6],
Zhu et al. [23], Cai et al. [51], Chen et al. [55],
AOD-Net [52], DCPDN [24], EVD-Net [3] and our previ-
ous work of [39] using challenging real videos as shown
in Figures 9 and 10. In Figure 9, the dehazed frames by
He et al. [6] tend to be dark since this method overestimates
transmission maps as mentioned in Section V-F. The dehazing
methods of Zhu et al. [23], Cai et al. [51] and Li et al. [3]

tend to under-estimate the thickness of the haze. Thus, the
dehazed videos still have some remaining haze as shown
in Figures 9(c), (d) and (f). The method by Chen et al. [55]
can enhance the image visibility. However, the dehazed results
are over-smoothed and many fine details in the recovered
images are removed. For example, the distant buildings are
over-smoothed.

In Figure 10, the methods of Chen et al. [55] and Zhang
and Patel [24] generate dark results as shown in (c) and
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(e). While the methods of MSCNN [50], AOD-Net [52] and
EVD-Net [3] tend to remain some haze in the dehazed results
as shown in Figure 10 (d) and (f). In contrast, the dehazed
results by the proposed VDHNet in Figures 9-10(g) are
visually more pleasing in dense haze regions without color
distortions or artifacts.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed a novel deep learning approach
for video dehazing in an encoder-decoder style. We show that
the temporal coherence of consecutive transmission maps can
be automatically learned in a trainable end-to-end system with-
out special design. Our method generates results that are as
good as or superior to the state-of-the-art dehazing approaches,
without parameter tuning or the requirement of challenging
image alignment. We also exploit the semantic information as
constraints to better restore the shape of transmission maps of
hazy frames.

Although we successfully applied the VHDNet for con-
secutive transmission maps estimation, we use the indoor
training set in this work. In the future, we will train the
VDHNet using outdoor images synthesized by the method
of [60], and exploit more efficient temporal constraints to
further improve the performance of the proposed algorithm.
In addition, the semantic branch used in this paper is the pre-
trained RefineNet. Therefore, we will design a network for
estimating semantic segmentation and transmission maps in a
unified network using the same training data in the future.
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