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Abstract
Conventional convolutional neural networks
(CNNs) have achieved great success in image
semantic segmentation. Existing methods mainly
focus on learning pixel-wise labels from an image
directly. In this paper, we advocate tackling the
pixel-wise segmentation problem by considering
the image-level classification labels. Theoretically,
we analyze and discuss the effects of image-level
labels on pixel-wise segmentation from the per-
spective of information theory. In practice, an
end-to-end segmentation model is built by fusing
the image-level and pixel-wise labeling networks.
A generative network is included to reconstruct
the input image and further boost the segmentation
model training with an auxiliary loss. Extensive
experimental results on benchmark dataset demon-
strate the effectiveness of the proposed method,
where good image-level labels can significantly
improve the pixel-wise segmentation accuracy.

1 Introduction
Semantic segmentation aims to assign a categorical label to
every pixel in an image, which plays an important role in au-
tonomous navigation, human-machine interaction, and virtual
reality. Earlier attempts on semantic segmentation focused on
designing hand-crafted features together with flat classifiers,
such as Boosting [Shotton et al., 2009] and Support Vector
Machines [Fulkerson et al., 2009]. The recent success of deep
convolutional neural networks (CNNs) [Krizhevsky et al.,
2012; Szegedy et al., 2015] on object recognition [He et al.,
2016], localization [Jie et al., 2016], re-identification [Zhang
et al., 2017], multimodal learning [Ma et al., 2016], and
segmentation [Li et al., 2017; Jin et al., 2017], has em-
powered the development of pixel-wise semantic segmen-
tation due to the rich hierarchical features and end-to-end
training architectures [Long et al., 2015; Lin et al., 2016;
Wang et al., 2017; Chen et al., 2016; Papandreou et al., 2015;
Zhang et al., 2018]. Among these deep models, fully con-
volutional network (FCN) [Long et al., 2015] is prevalent,
as it can allow arbitrary input size and produce results with
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efficient inference. Besides, PSPNet [Zhao et al., 2016] ad-
dressed the capability of global context aggregation through
a pyramid pooling module together with a scene parsing net-
work. Two similar works [Liu et al., 2015; Pan et al., 2017]
seek a better representation by fusing the global features ob-
tained from the whole image with additional feature learning
layers. To conclude, most existing methods share a similar
view of learning pixel-wise categorical labels from the image
directly.

However, when looking at an image, the first reaction of
human is to find out the objects involved roughly (e.g., a car
or an animal) and then figure out what they look like (e.g.,
shape and boundary). Inspired by such cognitive psychol-
ogy clue, we advocate regarding semantic segmentation as an
image-level to pixel-wise labeling task. In practice, we de-
compose semantic segmentation into two sub-tasks: estimat-
ing object categories existing in input image and learning the
shapes and boundaries of these specific objects, which could
be referred as a process of image-level labeling to pixel-wise
labeling. The key insight is to address the pixel-wise seg-
mentation problem progressively rather than accomplish it
directly. Based on the information theory, we first give the
theoretical proof that accurate image labels can eliminate the
invalid information in pixel labeling and make the task eas-
ier. Besides, analysis is made to discuss what effects may be
caused on pixel-wise labeling when image labels are partially
accurate.

Specifically, the proposed segmentation model is com-
posed of two streams: an image-level labeling network to find
existing object categories and a pixel-wise labeling network
(i.e., the segmentation network) to label a pixel with a spe-
cific object category, as illustrated in Figure 1. The category
information extracted by the image-labeling network will be
fused with the output of pixel-labeling network by dot prod-
uct. It is found that the fusion can boost the segmentation per-
formance by reducing the invalid information that the pixel-
labeling network needs to learn, i.e., the uncertainty about
pixel labels.

The loss function is defined as follows. First, multi-class
cross-entropy loss is used to measure the pixel-wise differ-
ence between the network prediction and the groundtruth.
Second, as a generative network is introduced to reproduce
the input image from its predicted segmentation result, a re-
construction loss between the input image and the recon-
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Figure 1: Illustration of the proposed segmentation architecture. The input image simultaneously undergoes two networks to yield the
image-level label and the pixel-wise probabilities specified for each category. The two intermediate results are fused to yield the corrected
probabilities, based on which the final pixel-wise segmentation results are generated. A generative network is included to reconstruct the
input image and provides an auxiliary loss to further boost the model.

Figure 2: Illustration of image-level label and pixel-wise probability
fusion with dot product operation.

structed one can be yielded. With the proposed two loss func-
tions, the whole network is trained in an end-to-end manner.

As a summary, the main contributions of this work are
threefold. First, we present a progressive image-to-pixel solu-
tion to address the semantic segmentation problem. Second,
theoretical analysis is given to prove that good image labels
are beneficial to reduce the uncertainty in pixel-wise label-
ing problem. An additional generative network is included
to provide auxiliary loss to further constrain the model. Last,
the proposed architecture is compatible to current CNN-based
models, and significant segmentation gains can be obtained
on benchmark dataset.

2 Methodology
The whole structure of our approach is illustrated in Figure
1. The input image simultaneously undergoes two networks
to yield the image-level label and the pixel-wise probabili-
ties specified for each category. The two intermediate re-
sults are fused to yield the corrected probabilities, based on
which the final pixel-wise segmentation results are generated.
Moreover, we propose a generative network to reconstruct the
image based on the fused probability feature maps. There-
fore, our training objective is defined as Loverall(θs, θg) =

Lseg + Lgen, where Lseg and Lgen denote the pixel-wise
segmentation loss and reconstruction loss, respectively. Dif-
ferent segmentation networks can be employed for pixel-wise
labeling, with the parameters tuned together with the gener-
ator. Due to the limited number of training samples, we em-
ploy the classification network trained in [Wei et al., 2014]
to generate the image-level label, with the parameters of clas-
sification network fixed during our training procedure. It is
worth noting that the classification network can also be tuned
jointly as long as enough training samples are available.

2.1 Fusion of Image-level and Pixel-wise Labels
The idea of the image-level and pixel-wise labels fusion is
to decrease the influence of a category as much as possible,
if it does not exist in the given image. Thus, the segmenta-
tion network does not need to consider such category and the
uncertainty of the task could be significantly reduced.

Concretely, dot product is employed to perform the fu-
sion as shown in Figure 2. The pixel-wise probability maps
predicted from the segmentation model are represented by
a three dimensional matrix, while the classification network
generates the image-level label in vector form. Suppose
the segmentation model yields a semantic prediction P ∈
[0, 1]

w×h×N , each pixel in P is represented by a vector which
has N elements indicating the probabilities that it belongs to
a specific category:

∑
p P (i, j, p) = 1. The image-level la-

bel is denoted as a vector L ∈ {0, 1}N . Each element in L
is either 1 or 0, which means that the image is either associ-
ated with the corresponding category or not. The dot product
operation is performed as follows.

P ′(i, j, · · · ) = P (i, j, · · · ) • L, (1)

where i ∈ {1, ..., w} and j ∈ {1, ..., h} denote the horizon-
tal and vertical pixel positions, respectively. The result of the
product of P and L is assigned to P ′ as the corrected predic-
tion. After the dot product, the P ′ is re-normalized to make
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sure that
∑

p P
′(i, j, p) = 1. With such fusion, the pixel-

wise prediction could be improved, based on which we can
generate the segmentation results.

As aforementioned, different networks can be employed to
realize the segmentation. In this paper, FCNs are used as the
baseline segmentation networks. Take FCN-32s for example,
for an input image u of size w × h × 3, FCN-32s together
with the classification network generate the fused probability
maps s(u), where s denotes the mapping function learned by
the segmentation architecture. Given an image uq and corre-
sponding label mapping vq in a dataset ofQ training samples,
the segmentation loss Lseg is defined as

Lseg(θs) =

Q∑
q=1

lmce(s(uq), vq), (2)

where θs denotes the parameters of FCN-32s, and lmce de-
notes the multi-class cross-entropy loss for the predicted
s(u).

2.2 Auxiliary Loss
With the pixel-wise segmentation results, we can introduce a
generative network to reconstruct the input image. Thus, a
reconstruction loss between the input image and the recon-
structed one can be yielded to further constrain the model.
The idea is similar to those in [Zhu et al., 2017; Yi et al.,
2017; Luo et al., 2017]. Let g denote the mapping func-
tion learned by the generative network, g(s(u)) is the recon-
structed image with the size of w × h × 3. The auxiliary
reconstruction loss Lgen can be defined as

Lgen(θg) =

Q∑
q=1

leuc(g(s(uq)), uq), (3)

where θg denotes the parameters of the proposed generative
network, and leuc denotes the Euclidean distance which is
better at preventing over-fitting. The auxiliary reconstruction
loss obtained by the generative network and the calculated
segmentation loss are jointly considered to train the seg-
mentation and generative networks. The generative network
consists of three convolutional layers, where the sizes of the
kernels are 21× 3× 3× 18, 18× 3× 3× 9, 9× 3× 3× 3,
respectively.

2.3 Training Procedure
For each epoch, we train both segmentation and generative
networks with Q iterations, where Q denotes the size of
dataset. In each iteration, the training proceeds in three steps.
First, the segmentation network is trained individually based
on Lseg . Second, the generative network is trained to recon-
struct the input image referring toLgen with the parameters of
the segmentation network fixed. Third, the segmentation and
generative networks are jointly trained by considering both
Lseg and Lgen. Such training strategy is employed for the
sake of smoothness in multi-network optimization as proved
in [Lee et al., 2015].

3 Theoretical Analysis
To investigate the effects of image labeling on pixel-wise seg-
mentation, we make a theoretical analysis from the informa-
tion theory perspective in this section. Suppose the whole
image dataset is associated with N categories, the category
set is X = {x1, x2, ..., xN}. Given a specific input image
associating with n categories (1 ≤ n ≤ N ) with a resolution
of w × h, we analyze the amount of invalid information that
the image-level labels can decrease for segmentation model
to generate pixel-wise segmentation under two assumptions.

3.1 Assumption I: Accurate Image-level Label
When the image label is absolutely accurate, it can help to
eliminate all invalid information which may be learned by the
pixel-wise segmentation network. Thus, such network could
learn the categories for each pixel only based on the valid
information, which is related to existing categories.

Let x be the label of one pixel in a given image, the initial
self-information of the event x = xi (1 ≤ i ≤ N ) is defined
as

I(x) = −logP (x) = −log 1

N
= logN,

(4)

where log denotes the natural logarithm with base e, and
I(x) denotes the amount of information that the segmenta-
tion model needs to learn from the input image. The defini-
tion of I(x) is therefore written in unit as nats. One nat is
the amount of information gained by observing an event of
probability 1/e.

The image-level label (represented in vector form) is fused
with the pixel-wise label by dot product, the idea is to set the
pixel-wise probabilities of the categories that do not exist in
the image to zeros, as shown in Figure 2. After dot product,
the category set turns intoX ′ v X , andX ′ is associated with
n categories which are all valid. The self-information of the
event x = xj (1 ≤ j ≤ n) becomes

I ′(x) = −logP ′(x) = −log 1

n
= logn.

(5)

Now the amount of information that segmentation model
needs to learn are decreased to I ′(x) = logn nats, which
denote all valid information. The difference between I(x)
and I ′(x) is calculated as follows.

d̂ = I(x)− I ′(x)
= logN − logn

= log
N

n
.

(6)

In fact, d̂ denotes the amount of invalid information coming
from those N −n outlier categories, which do not exist in the
given image.

In one extreme case, when there are only one existing cat-
egory in the given image (i.e., n = 1),

d̂ = log
N

1
= logN = I(x). (7)
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This means that all logN nats of information leaned by the
segmentation model are invalid. In other words, the segmen-
tation model can predict the label x of each pixel correctly
relying only on the image-level label.

In the other case, when all the N categories exist in the
given image (i.e., n = N ),

d̂ = log
N

N
= 0. (8)

This means that the information learned by the segmentation
model is all valid, so no information needs to be eliminated.
Hence, the dot product does not exert any influence on the
segmentation model.

Finally, as for the whole image, the amount of invalid in-
formation that the image label helps to decrease are w × h×
logN

n nats.

3.2 Assumption II: Noising Image-level Labels
In general, the image-level labels contain three types of
noises.

Case 1. Besides the n correct categories, the image label
also contains some outlier categories that do not exist in the
given image. Let m (1 ≤ m ≤ N − n) denote the num-
ber of these outlier categories, the amount of information that
segmentation model needs to learn after dot product are de-
creased from I(x) to

Im(x) = −logPm(x)

= −log 1

n+m

= log(n+m).

(9)

The difference between I(x) and Im(x) is calculated as
dm = I(x)− Im(x)

= logN − log(n+m)

= log
N

n+m
.

(10)

Since n < n + m ≤ N , we get 0 ≤ log N
n+m = dm <

d̂ = logN
n , which means that the image-level label can still

decrease log N
n+m nats of invalid information. Nevertheless,

these decreased dm = log N
n+m nats of invalid informa-

tion are less than d̂ defined in Equation (6), and d̂ − dm =
logn+m

n . Specially, when m reaches its maximum value
N − n, dm reaches its minimum value log N

n+N−n = 0, im-
plying that image label cannot decrease any invalid informa-
tion.

All the situations we discussed before share a common
point that image labels cover all existing categories, which
do not have any loss of valid information.

Case 2. When the image label is partially accurate, which
including only a part of n existing categories but no out-
lier categories, some negative effects may be caused. Let k
(1 ≤ k < n) be the number of the part existing categories
that one image label contains, the amount of information that
segmentation model can learn after dot product operation is

Ik(x) = −logPk(x) = −log
1

k
= logk.

(11)

Since I ′(x) = logn denotes all the valid information and
k < n, we should compute the difference between I ′(x) and
Ik(x) as

dk = I ′(x)− Ik(x)
= logn− logk

= log
n

k
.

(12)

It is found that dk = logn
k > 0, as 1 ≤ k < n. So dk de-

notes the loss of valid information provided by those n − k
categories, which should be maintained yet are eliminated by
dot product. Therefore, the segmentation model cannot learn
these logn

k nats of valid information. It means that the pixel-
wise labeling on these eliminated categories will be wrong.

Case 3. The last case is a combination of the two afore-
mentioned cases. Hence, the amount of information that the
segmentation model can learn is

Im,k(x) = −logPm,k(x)

= −log 1

m+ k

= log(m+ k).

(13)

As we discussed in Case 2, since k correct categories exist in
the image label, the amount of valid information is Ik(x) =
logk. So, the amount of lost valid information is dk = logn

k ,
which is the same as that in Case 2. The difference between
Im,k(x) and Ik(x) is calculated as

dm,k = Im,k(x)− Ik(x)

= −log 1

m+ k
− (−log 1

k
)

= log
m+ k

k
.

(14)

The dm,k represents the amount of invalid information re-
sulted from those m outlier categories. However, the whole
segmentation performance in this case and Case 2 is not com-
pletely bad. To suppress the amount of invalid information
dm,k, we can decrease the number of outlier labels (i.e., m)
by increasing the classification threshold τ as shown in Sec-
tion 4.1. But the side effect is that the number of valid labels
k will be reduced as well. Thus, it is unknown dm,k will
increase or decrease, similar when decreasing τ . So, the sug-
gestion obtained in these two cases is that a too large or too
small τ are both undesired. There should be a tradeoff for τ
as demonstrated in Figure 4.

On the other hand, increasing the threshold may have some
positive effects, though more valid labels may be removed (k
is smaller). First, the number of invalid labels (i.e.,m) will be
decreased as well. Second, the labels to be inferred turn to be
less. So, the segmentation task will be easier and the labeling
accuracy for the rest k categories could be promoted.

The following sections are presented to validate the above
theoretical analysis based on experimental results.

4 Experimental Results
In this section, the evaluation is conducted on the benchmark
segmentation dataset PASCAL VOC 2012 [Everingham et
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Figure 3: Visualization of segmented examples in PASCAL VOC 2011 validation set. From top to bottom, each row represents the input
image, segmentation results of FCN-8s, segmentation results of the proposed method and the groundtruth, respectively.

PA MPA FWAA MIOU
FCN-32s 89.1 73.3 81.4 59.4
FCN-32s+image label 93.6 87.4 88.5 74.9
FCN-32s+generator 90.7 75.5 83.8 63.8
FCN-32s+label+gen 93.9 87.5 89.1 75.7

Table 1: Ablation study on PASCAL VOC 2011 validation set.

al., 2010], which consists of 21 classes of objects (includ-
ing background). Similar to [Zhao et al., 2016], we use the
augmented data of PASCAL VOC 2012 with annotation of
[Hariharan et al., 2011] resulting 11,295, 736, 1456 samples
for training, validation and testing, respectively. To test the
benefits of the image-to-pixel labeling strategy, typical model
FCNs were employed as the baseline segmentation models.
In the training stage, SGD and Adam were employed as opti-
mizers to train the segmentation and generative networks with
the same learning rate of 10−10, respectively. The iteration
number 100,000 is set for all experiments.

The evaluation metrics used in this work include: Pixel
Accuracy (PA), Mean Pixel Accuracy (MPA), Frequency
Weighted Average Accuracy (FWAA) and Mean Intersection
over Union (MIOU). PA represents the proportion of the cor-
rectly labeled pixels to the total pixels. MPA denotes the
mean of pixel accuracy of all categories. FWAA is the PA
weighted by the pixel ratio of each category in one image.
MIOU is a standard measure commonly used in segmentation
problem [Rahman and Wang, 2016], which gives the similar-
ity between the predicted region and the groundtruth region
for an object.

4.1 Effect of Image Label Accuracy

To verify the amount of information that image labels de-
crease for segmentation as studied in Section 3, experimental
analysis is performed as follows.

PA MPA FWAA MIOU
FCN-32s 89.1 73.3 81.4 59.4
FCN-32s+dis 88.7 68.9 80.4 60.6
FCN-32s+gen 90.7 75.5 83.8 63.8

Table 2: Analysis of auxiliary loss on PASCAL VOC 2011 valida-
tion set.

Image Label is Absolutely Accurate
Since the groundtruth image labels are available in the val-
idation set of PASCAL VOC 2011, experiments were con-
ducted on it to test the proposed framework when the image
labels are completely accurate (using the groundtruth image
labels). As listed in Table 1, the results are consistent with
the conclusion drawn from Assumption I in Section 3.1. That
is, accurate image labels can eliminate all amount of invalid
information for pixel labeling and the segmentation perfor-
mance is improved significantly in all metrics, e.g., the gains
of MIOU reach 15.5%. Besides, the generator is also proved
to be beneficial, providing the gains of 4.4% in MIOU. Cer-
tainly, the best segmentation performance is yielded by incor-
porating both image labels and generator.

Image Label is Partially Accurate
The experimental validation about Assumption II was con-
ducted on the testing set of PASCAL VOC 2012 whose
groundtruth labels are unavailable. Even though with state-
of-the-art image-level labeling network, the image labels may
have errors inevitably. In the experiments, the trained image-
labeling network [Wei et al., 2014] was employed to generate
the image labels, which achieved about 90% in mean average
precision (MAP) when classifying the testing set of PASCAL
VOC 2012. Since the image-labeling network only outputs
the probabilities of categories that may exist in the given im-
age, the threshold value used to decide the image labels is
vital in discussing the influence of errors in image labels to
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PA MPA FWAA MIOU
FCN-32s 89.1 73.3 81.4 59.4
FCN-32s+image label (addition) 91.2 77.7 84.5 66.3
FCN-32s+image label (dot product) 93.6 87.4 88.5 74.9

Table 3: Analysis of image-level and pixel-wise feature fusion on PASCAL VOC 2011 validation set.

Method MIOU
FCN-32s 59.3
FCN-32s+image label 65.1
FCN-32s+generator 63.6
FCN-32s+image label+generator 66.4
FCN-8s 62.2
FCN-8s+image label 66.7
FCN-8s+generator 65.4
FCN-8s+image label+generator 68.2

Table 4: Comparison on PASCAL VOC 2012 testing set.

pixel labeling performance.
First, a lower threshold may incur more outlier categories

that do not exist in the image indeed, which belongs to Case
1 in Assumption II in Section 3.2. In this case, the amount of
invalid information that the image labels can help to decrease
for segmentation model is limited, so the improvement is lit-
tle. In the extreme case of which the threshold τ = 0, the
image labels contain all categories, implying thatm = N−n
and dm = 0 as proved in Case 1 in Assumption II. In this
situation, the image label does not decrease any invalid in-
formation, and the result equals to that of the baseline (i.e.,
FCN-32s+generator) as shown in Figure 4.

If the threshold is set too high, some correct categories may
be missed in image labels, which is consistent with Case 2 in
Assumption II. Since some correct categories are excluded,
certain amount of valid information needed is lost, which
even make the performance worse than that of the baseline
methods (e.g., τ = 0.7). Especially, the performance drops
quickly when the threshold approaches 1 (i.e., 100%) which
resulted from that almost all corrected categories are elimi-
nated, as shown in Figure 4.

In general, a relatively low threshold is more appealing in
practice, and MIOU gains could be produced as long as τ is
below 0.43. This situation is consistent with Case 3 in As-
sumption II, where some desired correct categories are main-
tained together with some undesired outlier ones. The results
in Figure 4 show that τ = 0.25 is a good tradeoff.

4.2 Performance Analysis
Analysis on the Auxiliary Loss
Besides the generative model, we can also introduce a dis-
criminator which is similar in GAN [Goodfellow et al., 2014]
to provide auxiliary loss to boost the model training. The dis-
criminator here is composed of five convolutional layers, and
the segmentation results obtained with generator and with dis-
criminator respectively are compared in Table 2. Apparently,
the comparison shows the generator is superior over the dis-
criminator to boost the proposed segmentation model as an
auxiliary means.

Figure 4: Analysis of the effects of different thresholds on PASCAL
VOC 2012 testing set.

Analysis on the Network Fusion
We tested different operations to fuse the information ex-
tracted by the image-labeling network and the pixel-labeling
network. As shown in Table 3, dot product is a better choice
than addition for network fusion. The reason is that the dot
product can correct the probabilities of outlier categories im-
mediately (by setting them to zero), while addition can only
increase the right probabilities to some extent.

Overall Performance
On PASCAL VOC 2012 testing set, as shown in Table 4, by
incorporating the proposed framework, the typical FCN seg-
mentation model FCN-32s and FCN-8s were boosted consid-
erably with the overall gains of 7.1% and 6.0% in MIOU,
respectively. One point needs to be clarified is that the MIOU
values of FCN-32s+generator in Table 4 and Figure 4 are
inconsistent, because the image label did not participate in
training in the experiments of Table 4 but did in Figure 4.
Also, the improvement can be visualized in Figure 3, where
some segmented examples are given for comparison.

5 Conclusions
In this paper, we addressed the semantic segmentation prob-
lem with the assistance of the image-level classification la-
bels. Theoretical studies showed that good image-level labels
can reduce the uncertainty in pixel-wise labeling to boost the
segmentation accuracy. We also proposed a deep model by
fusing the image-level and pixel-wise labeling networks. Var-
ious experimental results demonstrated that typical segmen-
tation networks can be improved considerably on benchmark
dataset with the proposed architecture.
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