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Adversarial Spatio-Temporal Learning
for Video Deblurring

Kaihao Zhang , Wenhan Luo , Yiran Zhong, Lin Ma , Member, IEEE, Wei Liu , and Hongdong Li

Abstract— Camera shake or target movement often leads to
undesired blur effects in videos captured by a hand-held camera.
Despite significant efforts having been devoted to video-deblur
research, two major challenges remain: 1) how to model the
spatio-temporal characteristics across both the spatial domain
(i.e., image plane) and the temporal domain (i.e., neighboring
frames) and 2) how to restore sharp image details with respect
to the conventionally adopted metric of pixel-wise errors. In this
paper, to address the first challenge, we propose a deblurring
network (DBLRNet) for spatial-temporal learning by applying a
3D convolution to both the spatial and temporal domains. Our
DBLRNet is able to capture jointly spatial and temporal informa-
tion encoded in neighboring frames, which directly contributes
to the improved video deblur performance. To tackle the second
challenge, we leverage the developed DBLRNet as a generator
in the generative adversarial network (GAN) architecture and
employ a content loss in addition to an adversarial loss for
efficient adversarial training. The developed network, which we
name as deblurring GAN, is tested on two standard benchmarks
and achieves the state-of-the-art performance.

Index Terms— Spatio-temporal learning, adversarial learning,
video deblurring.

I. INTRODUCTION

V IDEOS captured by hand-held cameras often suf-
fer from unwanted blurs either caused by camera

shake [1], or object movement in the scene [2], [3]. The task
of video deblurring aims at removing those undesired blurs
and recovering sharp frames from the input video. This is an
active research topic in the applied fields of computer vision
and image processing. Applications of video deblurring are
found in many important fields such as 3D reconstruction [4],
SLAM [5] and tracking [6].

In contrast to single image deblurring, video deblurring is a
relatively less tapped task until recently. And video deblurring
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is more challenging, partly because it is not entirely clear about
how to model and exploit the inherent temporal dynamics
exhibited among continuous video frames. Moreover, the com-
monly adopted performance metric, namely, pixel-wise resid-
ual error, often measured by PSNR, is questionable, as it
fails to capture human visual intuitions of how sharp or how
realistic a restored image is [7], [8]. In this paper, we plan
to leverage the recent advance of the adversarial learning
technique to improve the performance of video deblurring.

One key challenge for video deblurring is to find an effec-
tive way to capture spatio-temporal information existing in
neighboring image frames. Deep learning based methods have
recently witnessed a remarkable success in many applications
including image and video denoising and deblurring. Previous
deep learning methods are however primarily based on 2D
convolutions, mainly for computational sake. Yet, it is not
natural to use 2D convolutions to capture spatial and temporal
joint information, which is essentially in a 3D feature space.
In this paper, we propose a deep neural network called
DeBLuRing Network (DBLRNet), which uses 3D (volumetric)
convolutional layers, as well as deep residual learning, aims
to learn feature representations both across temporal frames
and across image plane.

As noted above, we argue that the conventional pixel-
wise PSNR metric is insufficient for the task of image/video
deblurring. To address this issue, we resort to adversarial
learning, and propose DeBLuRring Generative Adversarial
Network (DBLRGAN). DBLRGAN consists of a generative
network and a discriminate network, where the generative
network is the aforementioned DBLRNet which restores sharp
images, and the discriminate network is a binary classification
network, which tells a restored image apart from a real-world
sharp image.

We introduce a training loss which consists of two terms:
content loss and adversarial loss. The content loss is used to
respect the pixel-wise measurement, while the adversarial loss
promotes a more realistically looking (hence sharper) image.
Training DBLRGAN in an end-to-end manner, we recover
sharp video frames from a blurred input video sequence, with
some examples shown in Figure 1.

The contributions of this work are as follows:
• We propose a model called DBLRNet, which applies 3D

convolutions in a deep residual network to capture joint
spatio-temporal features for video deblurring.

• Based on the above DBLRNet, we develop a generative
adversarial network, called DBLRGAN, with both con-
tent and adversarial losses. By training it in an adversarial
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Fig. 1. Deblurring results of the proposed DBLRGAN on real-world video frames. The first and third rows show crops of consecutive frames from the
VideoDeblurring dataset. The second and fourth rows show corresponding deblurring results of DBLRGAN.

manner, the DBLRGAN recovers video frames which
look more realistic.

• Experiments on two standard benchmark datasets, includ-
ing the VideoDeblurring dataset and the Blurred KITTI
dataset, show that the proposed network DBLRNet
and DBLRGAN are effective and outperforms existing
methods.

II. RELATED WORK

Many approaches have been proposed for image/video
deblurring, which can be roughly classified into two cate-
gories: geometry-based methods and deep learning methods.

A. Geometry-Based Methods

Modern single-image deblurring methods iteratively esti-
mate uniform or non-uniform blur kernels and the latent sharp
image given a single blurry image [9]–[20]. However, it is
difficult for single image based methods to estimate kernel
because blur is spatially varying in real world. To employ
additional information, multi-image based methods [21]–[27]
have been proposed to address blur, such as flash/no-flash
image pairs [23], blurred/noise image pairs [22] and gyroscope
information [24]. In order to accurately estimate kernels, some
methods also use optical flow [28] and temporal informa-
tion [29]. However, most of these methods are limited by
the performance of an assumed degradation model and its
estimation, thus some of them are fragile and cannot handle
more challenging cases.

Some researchers attempt to use aggregation methods to
alleviate blur. Law et al. [30] propose a lucky image system,
which constructs a final image based on the best pixels

from different low quality images. Cho et al. [31] use patch-
based synthesis to restore blurry regions and ensure that
the deblurred frames are spatially and temporally coherent.
Motivated from the physiological fact, an efficient Fourier
aggregation method is proposed in [32], which creates a
consistently registered version of neighboring frames, and then
fuses these frames in the Fourier domain.

More recently, Pan et al. [33] propose to simultaneously
deblur stereo videos and estimate the scene flow. In this
method, motion cues from scene flow estimation, and blur
information can complement each other and boost the perfor-
mance. However, this kind of approaches is restricted to stereo
cameras.

B. Deep Learning Methods

Deep learning has shown its effectiveness in many computer
vision tasks, such as object detection [34], image classifica-
tion [35]–[38], facial processing [2], [39]–[42] and multime-
dia analysis [43]–[45]. There are also several deep learning
methods that achieve encouraging results on deblurring [2],
[46]–[51]. A non-bind deblurring method with deep Convolu-
tional Neural Network (CNN) is proposed in [46]. This data-
driven approach establishes connection between traditional
optimization-based schemes and empirically-determined CNN.
Sun et al. [2] predict the probabilistic distribution of motion
kernels at the patch level using CNN, then use a Markov
random field model to fuse the estimations into a dense field of
motion kernels. Finally, a non-uniform deblurring model using
patch-level prior is employed to remove motion blur. In [47],
a deep multi-scale CNN is proposed for image deblurring.
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Most of these methods aim at image deblurring, so they do
not need to consider temporal information implied in videos.

For video deblurring, the method closest to our approach is
DBN [48], which proposes a CNN model to process informa-
tion across frames. Neighboring frames are stacked along RGB
channels and then fed into the proposed model to recover the
central frame of them. This method considers multiple frames
together and thus achieves comparable performance with state-
of-the-art methods.

However, this method employs 2D convolutions, which do
not operate in the time axis (corresponding to temporal infor-
mation). By doing so, temporal information is transformed
into spatial information in their setting, thus limited temporal
information is preserved. Meanwhile, this method (as most of
the existing methods) trains the model to maximize the pixel
fidelity, which cannot ensure that the recovered images look
realistic sharp. Our proposed method, on the contrary, learns
spatio-temporal features by 3D convolutions, and integrates the
3D deblurring network into a generative adversarial network
to achieve photo-realistic results.

Even our proposed method takes neighboring frames as
inputs, we call it as video deblurring method for two reasons.
Firstly, previous work like DBN [48], is called as video
deblurring method. DBN also takes five neighboring frames
as input to generate the middle sharp frame. Secondly, this
method can be applied to tackle video deblurring task in
the real world. Specially, videos can be regarded as multiple
consecutive frames. When videos are input into our model,
the proposed DBLRNet tackles five neighboring frames as a
whole to generate the deblurred middle frame based on their
spatio-temporal information, and obtain the deblurred videos
by continuous deblurred frames finally.

III. OUR MODEL

Overview: In this section, we first introduce our DBLRNet,
and then present the proposed network DBLRGAN which is
on the basis of DBLRNet. Finally we detail the two loss
functions (content and adversarial losses) which are used in the
training stage. Both the DBLRNet and DBLRGAN are end-
to-end systems for video deblurring. Note that, blurry frames
can be put into our proposed models without alignment.

A. DBLRNet

In 2D CNN, convolutions are applied on 2D images or fea-
ture maps to learn features in spatial dimensions only. In case
of video analysis problems, it is desirable to consider the
motion variation encoded in the temporal dimension, such
as multiple neighboring frames. In this paper, we propose
to perform 3D convolutions [43] the convolution stages of
deep residual networks to learn feature representations from
both spatial and temporal dimensions for video deblurring.
We operate the 3D convolution via convolving 3D ker-
nels/filters with the cube constructed from multiple neighbor-
ing frames. By doing so, the feature maps in the convolution
layers can capture the dynamic variations, which is helpful to
model the blur evolution and further recover sharp frames.

TABLE I

CONFIGURATIONS OF THE PROPOSED DBLRNET. IT IS COMPOSED OF
TWO CONVOLUTIONAL LAYERS (L1 AND L2), 14 RESIDUAL BLOCKS,

TWO CONVOLUTIONAL LAYERS (L31 AND L32) WITHOUT SKIP

CONNECTION, AND THREE ADDITIONAL CONVOLUTIONAL

LAYERS (L33, L34 AND L35). EACH RESIDUAL BLOCK
CONTAINS TWO CONVOLUTIONAL LAYERS, WHICH ARE

INDICATED BY L(X) AND L(X+1) IN THE TABLE,
WHERE “X” EQUALS 3, 5, 7, 9, 11, 13, 15, 17,

19, 21, 23, 25, 27 AND 29 RESPECTIVELY FOR

THESE RESIDUAL BLOCKS

Formally, the 3D convolution operation is formulated as:

V xyz
i j = σ(

∑

m

Pi−1∑

p=0

Qi−1∑

q=0

Ri −1∑

r=0

V (x+p)(y+q)(z+r)
(i−1)m · g pqr

i jm + bi j ),

(1)

where V xyz
i j is the value at position (x, y, z) in the j -th

feature map of the i -th layer, (Pi , Qi , Ri ) is the size of 3D
convolution kernel. Qi responds to the temporal dimension.
g pqr

i jm is the (p, q, r)-th value of the kernel connected to the
m-th feature map from the (i − 1)-th layer. σ (·) is the ReLU
nonlinearity activation function, which is shown to lead to
better performance in various computer vision tasks than other
activation functions, e.g. Sigmoid and Tanh.

Defining 3D convolution, we propose a model called
DBLRNet, which is shown in Figure 2. DBLRNet is com-
posed of two 3 × 3 × 3 convolutional layers, several resid-
ual blocks [38], each containing two convolution layers,
and another five convolutional layers. This architecture is
designed inspired by the Fully Convolutional Neural Net-
work (FCNN) [52], which is originally proposed for semantic
segmentation. Different from FCNN and DBN [48], spatial
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Fig. 2. The proposed DBLRNet framework. The input to our network is five time-consecutive blurry frames. The output is the central deblurred frame.
By performing 3D convolutions, this model learns joint spatial-temporal feature representations.

size of feature maps in our model keeps constant. Namely,
there is not any down-sampling operation nor up-sampling
operation in our DBLRNet. The detailed configurations of
DBLRNet is given in Table I.

As Figure 2 shows, the input to DBLRNet is five consec-
utive frames. Note that we does not conduct deblurring in
the original RGB space. Alternatively, we conduct deblurring
on basis of gray-scale images. Specifically, the RGB space
is transformed to the YCbCr space, and the Y channel is
adopted as input since the illumination is the most salient one.
We perform 3D convolutions with kernel size of 3 × 3 × 3
(3 × 3 is the spatial size and the last 3 is for the temporal
dimension) in the first and second convolutional layers. To be
more specific, in layer 1, three groups of consecutive frames
are convolved with a set of 3D kernels respectively, resulting
in three groups of feature maps. These three groups of feature
maps are convolved with 3D filters again to obtain higher-level
feature maps. In the following layers, the size of convolution
kernels is 3×3×1 due to the decrease of temporal dimensions.
The stride and padding are set to 1 in every layer. The output
of DBLRNet is the deblurred central frame. We transform the
gray-scale output back to colorful images with the original Cb
and Cr channels.

B. DBLRGAN

GAN is proposed to train generative parametric models
by Goodfellow et al. [53]. It consists of two networks: a
generator network G and a discriminator network D. The goal
of G is to generate samples, trying to fool D, while D is
trained to distinguish generated samples from real samples.
Inspired by the adversarial training strategy, we propose a

TABLE II

CONFIGURATIONS OF OUR D MODEL IN DBLRGAN. BN MEANS BATCH
NORMALIZATION AND ReLU REPRESENTS THE

ACTIVATION FUNCTION

model called DeBLuRring Generative Adversarial Network
(DBLRGAN), which utilizes G to deblur images and D to
discriminate deblurred images and real-world sharp images.
Ideally, the discriminator can be fooled if the generator outputs
sharp enough image.

Following the formulation in [53], solving the deblurring
problem in the generative adversarial framework leads to the
following min-max optimization problem:

min
G

max
D

V (G, D) = Eh∼ptrain(h) [log(D(h))]
+ Eĥ∼pG(ĥ)

[log(1 − D(G(ĥ)))], (2)

where h indicates a sample from real-world sharp frames and
ĥ represents a blurry sample. G is trained to fool D into
misclassifying the generated frames, while D is trained to
distinguish deblurred frames from real-world sharp frames. G
and D models are trained alternately, and our ultimate goal
is to train a model G that recovers sharp frames given blurry
frames.

As shown in Figure 3, we use the proposed DBLRNet
(Figure 2 and Table I) as our G model, and build a CNN
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Fig. 3. The DBLRGAN framework for video deblurring. The architecture consists of a Generator and a Discriminator. The Generator is our proposed
DBLRNet, while the Discriminator is a VGG-like CNN net.

model as our D model, following the architectural guidelines
proposed by Radford et al. [54]. This D model is similar to the
VGG network [36]. It contains 14 convolutional layers. From
bottom to top, the number of channels of the convolutional
kernels increases from 64 to 512. Finally, this network is
trained via a two-way soft-max classifier at the top layer to
distinguish real sharp frames from deblurred ones. For more
detailed configurations, please refer to Table II.

C. Loss Functions

In our work, we use two types of loss functions to train
DBLRGAN.

D. Content Loss

The Mean Square Error (MSE) loss is widely used in
optimization objective for video deblurring in many existing
methods. Based on MSE, our content loss function is defined
as:

Lcontent = 1

W H

W∑

x=1

H∑

y=1

(I sharp
x,y − G(I blurry)x,y)

2
, (3)

where W and H are the width and height of a frame,
I sharp
x,y is the value of sharp frames at location (x, y), and

G(I blurry)x,y corresponds to the value of deblurred frames
which are generated from DBLRNet.

E. Adversarial Loss

In order to drive G to generate sharp frames similar to the
real-world frames, we introduce an adversarial loss function
to update models. During the training stage, parameters of
DBLRNet are updated in order to fool the discriminator D.
The adversarial loss function can be represented as:

Ladversarial = log(1 − D(G(I blurry))), (4)

where D(G(I blurry ) is the probability that the recovered frame
is a real sharp frame.

F. Balance of Different Loss Functions

In the training stage, the loss functions are combined in a
weight fusion fashion:

L = Lcontent + α · Ladversarial. (5)

In order to balance the content and adversarial losses, we use
a hyper-parameter α to yield the final loss L. We investigate
different values of α from 0 to 0.1. When α = 0, only
the content loss works. In this case, DBLRGAN degrades to
DBLRNet. With the increase of α, the adversarial loss plays
a more and more important role. The value of α should be
relative small, because large values of α can degrades the
performance of our model.

IV. EXPERIMENTAL RESULTS

In this section, we conduct experiments to demonstrate the
effectiveness of the proposed DBLRNet and DBLRGAN on
the task of video deblurring.

A. Datasets

1) VideoDeblurring Dataset: Su et al. [48] build a bench-
mark which contains videos captured by various kinds of
devices such as iPhone 6s, GoPro Hero 4 and Nexus 5×, and
each video includes about 100 frames of size 1280 × 720.
This benchmark consists of two sub datasets: quantitative and
qualitative ones. The quantitative subset contains 6708 blurry
frames and their corresponding ground-truth sharp frames
from 71 videos. The qualitative subset includes 22 scenes,
most of which contain more than 100 images. Note that there
is not ground truth for the qualitative subset, thus we can
only conduct qualitative experiments on this subset. We split
the quantitative subset into 61 training videos and 10 testing
videos, which is the same setting as the previous method [48].
Besides quantitative experiments on the 10 testing videos,
we additionally test our models on the qualitative subset.
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Fig. 4. Exemplar results on the VideoDeblurring dataset (quantitative subset). From left to right: real blurry frame/ Output of DBLRGAN, input, PSDEBLUR,
DBN [48], DBLRNet (single), DBLRNet (multi), DBLRNet, DBLRGAN and ground-truth. All results are obtained without alignment. Best viewed in color.

2) Blurred KITTI Dataset: Geiger et al. [55] develop
a dataset called KITTI by using their autonomous driving
platform. The KITTI dataset consists of several subsets for
various kinds of tasks, such as stereo matching, optical flow
estimation, visual odometry, 3D object detection and tracking.
Based on the stereo 2015 dataset in the KITTI dataset,
Pan et al. [33] create a synthetic Blurred KITTI dataset, which
contains 199 scenes. Each of the scenes includes 3 images
captured by a left camera and 3 images captured by a right
camera. It is worthy noting that, the KITTI data set is not used
when training our models. Namely, this dataset is utilized only
for testing.

B. Implementation Details and Parameters

When training DBLRNet, we use Gaussian distribution
with zero mean and a standard deviation of 0.01 to initialize
weights. In each iteration, we update all the weights after
learning a mini-batch of size 4. To augment the training set,
we crop a 128 × 128 patch at any location of an image
(1280 × 720). In this way, there are at least 712193 possible
samples per one frame on the dataset [48], which greatly
increases the number of training samples. In addition, we also
randomly flip frames in the training stage. The DBLRNet
is trained with a learning rate of 10−4, based on the con-
tent loss only. We also decrease the learning rate to 10−5

when the training loss does not decrease (usually after about
1.5 × 105 iterations), for the sake of additional performance
improvement.

In DBLRGAN, we set the hyper parameter α as
0.0002 when we conduct experiments as empirically this
value achieves the best performance. It has a better PSNR
value due to three reasons. Firstly, when training DBLRGAN,
we directly place DBLRNet as our generator and fine-tune
our DBLRGAN. Thus, the DBLRGAN has a high PSNR
value like DBLRNet at the beginning. Secondly, the loss

functions of DBLRGAN are combined in a weight fusion
fashion. We set the hyper parameter α as 0.0002 when we
conduct experiments. This is a very small value, which forces
the content loss to have an overwhelming superiority over
the adversarial loss on PSNR value during the training stage.
Thirdly, the learning rate is set as 10−5, so the PSNR value
does not have severe changes. We early stop training our
DBLRGAN before the PSNR start to drop.

C. Effectiveness of DBLRNet

The proposed DBLRNet has the advantage of learning
spatio-temporal feature representations. In order to verify the
effectiveness of DBLRNet, we develop another two similar
neural networks: DBLRNet (single) and DBLRNet (multi).
These two models have the same network architectures as the
original DBLRNet while there are two differences between
them and the original DBLRNet. The first difference is the
input. The input of DBLRNet (single) is one single frame,
while the input of DBLRNet (multi) and DBLRNet is a
stack of five neighboring frames. The second difference is
that, in both DBLRNet (single) and DBLRNet (multi), all the
convolution operations are 2D convolution operations.

Table III and IV show the PSNR values of DBLRNet
(single), DBLRNet (multi) and DBLRNet on the VideoDe-
blurring dataset and the Blurred KITTI dataset, respectively.
Compared with DBLRNet (single), DBLRNet (multi) achieves
approximately 3% ∼ 5% improvement of PSNR values, which
shows that stacking multiple neighboring frames is useful to
learn temporal features for video deblurring even in case of 2D
convolution. Comparing DBLRNet with DBLRNet (multi),
there are additionally 1% ∼ 5% improvement in terms of
PSNR. We suspect that the improvement results from the
power of spatio-temporal feature representations learned by
3D convolution. Conducting these two kinds of comparisons,
the effectiveness of DBLRNet has been verified.
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TABLE III

PERFORMANCE COMPARISONS IN TERMS PSNR WITH PSDEBLUR, WFA [32], DBN (SINGLE), DBN (NOALIGN), DBN(FLOW) [48], DBLRNET
(SINGLE) AND DBLRNET (MULTI) ON THE VIDEODEBLURRING DATASET. THE BEST RESULTS ARE SHOWN IN BOLD, AND THE SECOND BEST

ARE UNDERLINED. ALL RESULTS OF DBLRNET AND DBLRGAN ARE OBTAINED WITHOUT ALIGNING

Fig. 5. Exemplar results on the VideoDeblurring dataset (qualitative subset). From left to right: real blurry frame/Output of GBLRGAN, input, PSDEBLUR,
DBN [48], Kim et al. [28], DTBNet [50], DBLRNet (single), DBLRNet (multi), DBLRNet and DBLRGAN. All results are attained without alignment. Best
viewed in color.

D. Effectiveness of DBLRGAN

In this section, we investigate the performance of the
proposed DBLRGAN. Table III and IV show the quanti-
tative results on the VideoDeblurring and Blurred KITTI
dataset, respectively. Quantitatively, DBLRGAN outperforms
DBLRNet with slight advance (about 1% improvement).
As have mentioned above, the generator model in DBLRGAN
aims to generate frames with similar pixel values as the sharp
frames while the discriminator model along with the adver-
sarial loss drives the generator to recover realistic images like
real-word images. These two models complement each other
and achieve better results. The results in Table III and IV
show that the improvement achieved by DBLRNet is more

obvious than GAN model. While according to Figure 5,
the deblurred frames generated by DBLRGAN are sharper
than DBLRNett, e.g., the word “Bill” in the top row. α should
be set as a little value because a bigger α will break the
balance of content and adversarial loss, which causes worse
performance of video deblurring.

Figure 4 and 5 provide exemplar results on the quantita-
tive and qualitative subsets of the VideoDeblurring dataset,
respectively. Please notice the two columns corresponding to
DBLRNet and DBLRGAN in Figure 4, especially the letters
in the third row, where results of DBLRGAN are more photo-
realistic than those of DBLRNet. The same case is observed
in Figure 5. Letters in results of DBLRGAN are sharper than
those of DBLRNet, which consistently shows that, DBLRGAN
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Fig. 6. Performance of our method on blurry videos caused by bokeh. The figure shows a sample frame from the Blurred KITTI dataset, which is captured
from a car moving at a high speed. The blurs take place in the side area, while the center part is clear. We show a few pairs of zoomed-in patches from the
frame before and after applying our method. The sharper edge demonstrates that our method can generalize well to other types of blurry videos.

generates more realistic frames with finer textural details
compared with DBLRNet.

All results of DBLRNet and DBLRGAN are obtained with-
out aligning. Aligning images is computationally expensive
and fragile [48]. Kim et al. [50] evaluate DBN model and
find that the speed of DBN model without aligning is almost
more than 20 times faster than it with aligning because
aligning procedure is very time-consuming. Our proposed
models enable the generation of high quality results without
computing any alignment, which makes it highly efficient to
scene types.

E. Comparison With Existing Methods

To further verify the effectiveness of our models,
we additionally compare the performance of DBLRNet and

DBLRGAN with that of several state-of-the-art approaches
on both the VideoDeblurring dataset and the KITTI
dataset.

On the VideoDeblurring dataset, we compare our models
with PSDEBLUR, WFA [32], DBN [48] and DBN (sin-
gle). PSDEBLUR is the deblurred results of PHOTOSHOP.
WFA is a method based on multiple frames as input. DBN
achieves the state-of-the-art performance on the VideoDeblur-
ring data set before this work. DBN (single) is a variant of
DBN which stacks 5 copies of one single frame as input.
Table III shows quantitative comparisons between our methods
and these methods. Specially, the results indicate that our
method significantly outperforms the DBN model by 3.14 db.
Figure 4 and 5 also represent visual comparison between our
models and these methods on both the quantitative (Figure 4)
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TABLE IV

PERFORMANCE COMPARISONS WITH [28], [33], AND [56] ON THE
BLURRED KITTI DATASET IN TERMS OF THE PSNR CRITERION.

THE BEST RESULTS ARE SHOWN IN BOLD, AND

THE SECOND BEST ARE UNDERLINED

and qualitative (Figure 5) sub-datasets, respectively. Evidently
our models achieves sharper results.

On the dataset of Blurred KITTI, we conduct comparison
with [28], [33], and [56]. Reference [33] is a geometry
based method and utilizes additional stereo information from
image pairs. It is the current state-of-the-art on the Blurred
KITTI dataset. We simply apply the DBLRNet trained on
the VideoDeblurring dataset to the Blurred KITTI dataset and
still achieve comparable results with [33]. With the additional
adversarial loss, DBLRGAN slightly outperforms [33]. Please
note that, our models are not specialized for the stereo setting.

F. Different Frames & Other Types of Blur

1) Different Frames: We are curious about how the number
of consecutive frames influences the performance of our
DBLRGAN model. Thus we compare the PSNR values of the
model by varying the number of input blurry frames. Making
it more specific, on the VideoBlurring dataset, five kinds of
settings, three, five, seven, nine and eleven continuous frames
are taken as input to our model. Fig. 7 shows that our model
with five frames as input achieves the best performance. With
the increase of input frames, the PSNR values become lower.
We suspect that, as our 3D convolution based network can
extract powerful representations to describe short-term fast-
varying motions occurring in continuous input frames, it is
suitable to set the temporal span relatively small to capture
the rapid dynamics across local adjacent frames.

2) Generalize to Other Types of Blurry Videos: Though
our model is trained on the VideoDeblurring dataset, which
includes only blurry frames caused by camera shakes, we are
also curious about how it generalize to blurry videos of
other blur types. To this end, we test it on videos from the
Blurred KITTI dataset. Fig. 6 shows exemplar frames, which
is captured by a camera mounted on a high-speed car. The
dominated blur is cause by bokeh (see the comparison between
the center area and the border area in the image), rather than
camera shakes. As shown in the comparison of the enlarged
patches, by applying our DBLRGAN model, the edges in
the image become sharper. As discussed above, this verifies
the advantage of our method capturing short-term fast-varying
motions.

3) Limitation: Removing jumping artifacts is a challenge
of video deblurring. As shown in Fig. 1 (col. 4&5, row
2), there are also some jumping artifacts in the deblurred

Fig. 7. Performance comparisons of our method in terms of PSNR by varying
the number of input frames.

frames. Thus our method cannot solve it completely. However,
the proposed model contributes to alleviate the unexpected
temporal artifacts because it captures jointly spatial and tempo-
ral information encoded in neighboring frames. Even without
post-processing and aligning, our proposed model can also
achieve satisfied performance. Please refer to Fig. 4 and 5.
Comparing with prior methods, when frames are severely
blurred, our methods can generate better deblurred frames.

V. CONCLUSIONS

In this paper, we have resorted to spatio-temporal learning
and adversarial training to recover sharp and realistic video
frames for video deblurring. Specifically, we proposed two
novel network models. The first one is our DBLRNet, which
uses 3D convolutional kernels on the basis of deep residual
neural networks. We demonstrated that DBLRNet is able to
capture better spatio-temporal features, leading to improved
blur removal. Our second contribution is DBLRGAN equipped
with both the content loss and adversarial loss, which are
complementary to each other, driving the model to generate
visually realistic images. The experimental results on two
standard benchmarks show that our proposed DBLRNet and
DBLRGAN outperform the existing state-of-the-art methods
in video deblurring.
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