

Multimodal Convolutional Neural Networks for Matching Image and Sentence Lin Ma, Zhengdong Lu, Lifeng Shang, and Hang Li Noah's Ark Lab, Huawei Technologies

Contributions

- \star *m*-CNNs summarize the image, compose words of the sentence into different semantic fragments, and learn the matching relations and interactions between image and the composed fragments.
- \star m-CNNs fully exploit complicated matching relations between image and sentence by letting image and the composed fragments of the sentence meet and interact at different levels.
- \star m-CNNs outperform the state-of-the-art approaches for bidirectional image and sentence retrieval on the Flickr8K, Flickr30K, and Microsoft COCO datasets.

1: Matching between image and sentence

Playing an essential role in

- many image and sentence applications
- 0 Image retrieval with sentence
- Image annotation with sentence
- Occurring at different levels
- Word-level relations
- Phrase-level relations
- Sentence-level relations

2: Multimodal Convolutional Neural Network (m-CNN)

•Image CNN: Encoding image content

 $\nu_{im} = \sigma(\mathbf{w}_{im}(CNN_{im}(I)) + b_{im})$

Matching CNN: learning the joint representation of image and sentence

• Composing words to different semantic fragments

• Learning interactions between image and word compositions

MLP: Summarizing the matching score

 $\mathbf{s}_{match} = \mathbf{w}_s \big(\sigma(\mathbf{w}_h(\nu_{JR}) + b_h) \big) + b_s$

http://mcnn.noahlab.com.hk/project.html

3: Matching CNN

level fragments of sentence:

- Convolution: composing higher semantic representations from words and learning interaction between image and word
- from convolution

 $\nu_{(\ell,f)}^{i} = g(\vec{\nu}_{(\ell-1)}^{i}) \cdot \sigma(\mathbf{w}_{(\ell,f)}\vec{\nu}_{(\ell-1)}^{i})$

• Max-pooling: filtering out unreliable compositions

interactions until representations composed convolution and max-pooling processes. • Short phrase: objects and their relationships

0 Long phrase: objects, their activities, and their relative positions

Sentence-level matching CNN: deferring the matching until the sentence is fully represented.

Training: *m*-CNNs are trained with contrastive sampling using a ranking loss function. $e_{\theta}(x_n, y_n, y_m) = \max\left(0, \mu - \mathbf{s}_{match}(x_n, y_n) + \mathbf{s}_{match}(x_n, y_m)\right)$

4: Experiment Results

Bidirectional image and sentence retrieval on								В	Bidirectional image and sentence retrieval on										Bidirectional image and sentence retrieval on									
Flickr8K										Flickr30K										Microsoft COCO								
Sentence Retrieval Image Retrieval										Sentence Retrieval Image Retrieval																		
	R@1	R@5	R@10	Med r	R@1	R@5	R@10	Med r			R@1	R@5	R@10	$\operatorname{Med} r$	R@1	R@5	R@10	Med r										
Random Ranking	0.1	0.6	1.1	631	0.1	0.5	1.0	500		Random Ranking	0.1	0.6	1.1	631	0.1	0.5	1.0	500				C (D (1		1	-		
DeViSE	4.8	16.5	27.3	28.0	5.9	20.1	29.6	29		DeViSE	4.5	18.1	29.2	26	6.7	21.9	32.7	25			Sentence	e Retrieval		Image Ketrieval				
SDT-RNN	6.0	22.7	34.0	23.0	6.6	21.6	31.7	25		SDT-RNN	9.6	29.8	41.1	16	8.9	29.8	41.1	16			R@1	R@5	R@10	Med r	R@1	R@5	R@10	Med r
MNLM	13.5	36.2	45.7	13	10.4	31.0	43.7	14			14.8	39.2	50.9	10	11.8	34.0	46.3	13		Random Ranking	0.1	0.6	1.1	631	0.1	0.5	1.0	500
MNLM-VGG	18.0	40.9	55.0	8	12.5	37.0	51.5	10		m-RNN	18.4	30.7 40.2	50.9	10	10.8	42.0	30.5 41.5	0 16		<i>m</i> -RNN-vgg	41.0	73.0	83.5	2	29.0	42.2	77.0	3
m-RNN	14.5	37.2	48.5	11	11.5	31.0	42.4	15		m-RNN-VGG	35.4	63.8	73.7	3	22.8	50.7	63.1	5		DVSA	38.4	69.9	80.5	1	27.4	60.2	74.8	3
Deep Fragment	12.6	32.9	44.0	14	9.7	29.6	42.5	15		Deep Fragment	14.2	37.7	51.3	10	10.2	30.8	44.2	14		STV (uni-skip)	30.6	64.5	79.8	3	22.7	56.4	71.7	4
RVP (T)	11.6	33.8	47.3	11.5	11.4	31.8	45.8	12.5		RVP (T)	11.9	25.0	47.7	12	12.8	32.9	44.5	13		STV (bi-skip)	32.7	67.3	79.6	3	24.2	57.1	73.2	4
RVP (T+I)	11.7	34.8	48.6	11.2	11.4	32.0	46.2	11		RVP (T+I)	12.1	27.8	47.8	11	12.7	33.1	44.9	12.5		STV (combine-skip)	33.8	67.7	82.1	3	25.9	60.0	74.6	4
DVSA (DepTree)	14.8	37.9	50.0	9.4	11.6	31.4	43.8	13.2		DVSA (DepTree)	20.0	46.6	59.4	5.4	15.0	36.5	48.2	10.4		FV (Mean Vec)	33.2	61.8	75.1	3	24.2	56.4	72.4	4
DVSA (BRNN)	16.5	40.6	54.2	7.6	11.8	32.1	44.7	12.4		DVSA (BRNN)	22.2	48.2	61.4	4.8	15.2	37.7	50.5	9.2		FV (GMM)	39.0	67.0	80.3	3	24.2	59.2	76.0	4
NIC	20.0	*	61.0	6	19.0	*	64.0	5		NIC	17.0	*	56.0	7	17.0	*	57.0	7		FV (LMM)	38.6	67.8	79.8	3	25.0	59.5	76.1	4
OverFeat:										LRCN	*	*	*	*	17.5	40.3	50.8	9		FV (HGLMM)	37.7	66.6	79.1	3	24.9	58.8	76.5	4
m -CNN $_{wd}$	8.6	26.8	38.8	18.5	8.1	24.7	36.1	20		OverFeat :	105									FV (GMM+HGLMM)	39.4	67.9	80.9	2	25.1	59.8	76.6	4
m-CNN _{phs}	10.5	29.4	41.7	15	9.3	27.9	39.6	17		m -CNN $_{wd}$	12.7	30.2	44.5	14	11.6	32.1	44.2	14		VGG :								
m-CNN _{phl}	10.7	26.5	38.7	18	8.1	26.6	37.8	18		m -CNN $_{phs}$	14.4	38.0 38.1	49.6	11 11 5	12.4	33.3 32.7	44.7	14		m-CNN _{wd}	34.1	66.9	79.7	3	27.9	64.7	80.4	3
m -CNN $_{st}$	10.6	32.5	43.6	14	8.5	27.0	39.1	18		m-CNN _{phl}	13.8	37.9	49.5	11.5	12.5	32.7	44.1	14		m-CNN _{nhs}	34.6	67.5	81.4	3	27.6	64.4	79.5	3
m -CNN $_{ENS}$	14.9	35.9	49.0	11	11.8	34.5	48.0	11		m-CNN _{ENS}	20.1	44.2	56.3	8	15.9	40.3	51.9	9.5		m-CNN _{phl}	35.1	67.3	81.6	2	27.1	62.8	79.3	3
VGG:										VGG										m-CNN _{st}	38.3	69.6	81.0	2	27.4	63.4	79.5	3
m-CNN _{and}	15.6	40.1	55.7	8	14.5	38.2	52.6	9		m-CNN _{wd}	21.3	53.2	66.1	5	18.2	47.2	60.9	6		m-CNN _{ENS}	42.8	73.1	84.1	2	32.6	68.6	82.8	3
m-CNN _{ph}	18.0	43.5	57.2	8	14.6	39.5	53.8	9		m-CNN _{phs}	25.0	54.8	66.8	4.5	19.7	48.2	62.2	6							I			
m-CNN _{wh}	16.7	43.0	56.7	7	14.4	38.6	52.2	9		m-CNN _{phl}	23.9	54.2	66.0	5	19.4	49.3	62.4	6										
m-CNN _{et}	18.1	44.1	57.9	7	14.6	38.5	53.5	9		m -CNN $_{st}$	27.0	56.4	70.1	4	19.7	48.4	62.3	6										
m-CNN _{ENS}	24.8	53.7	67.1	5	20.3	47.6	61.7	5		<i>m</i> -CNN _{ENS}	33.6	64.1	74.9	3	26.2	56.3	69.6	4										

Contact: Dr. Lin Ma (forest.linma@gmail.com)

Word-level matching CNN: image meets the word-

• Gating: eliminating unexpected matching noises

$$a_{-1)} + b_{(\ell,f)}, g(x) = \begin{cases} 0, & x == \mathbf{0} \\ 1, & \text{otherwise} \end{cases}$$

Phrase-level matching CNN: deferring the higher semantic some from words by

• Sentence CNN: three layers of convolution and max-pooling • Multimodal layer: concatenating the image and sentence representations

