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Abstract—This paper proposes the first attempt to utilize multi-
modal learning method for the representation learning of the 
solar radio spectrums. The solar radio signals sensed from differ-
ent frequency channels, which present different characteristics, 
are regarded as different modalities. We employ a multimodal 
neural network to learn the representations of the solar radio 
spectrum, which can distinguish the differences and learn the 
interactions between different modalities. The original solar ra-
dio spectrums are firstly pre-processed, including normalization, 
denoising, channel competition and etc., before being fed into the 
multimodal learning network. Experimental results have demon-
strated that the proposed multimodal learning network can learn 
the representation of the solar radio spectrum more effectively, 
and improve the classification accuracy. 

Keywords-Multimodal learning; solar radio astronomy, solar 
radio spectrum; classification 

I.  INTRODUCTION  
Solar radio astronomy is an emerging interdisciplinary field 

of radio astronomy and solar physics. The discovery of radio 
waves from the Sun provides a new window to investigate the 
solar atmosphere, and then new information about the Sun can 
be obtained. For example, the properties of the solar corona are 
much more easily determined at radio wavelengths. As solar 
radio telescopes have improved a lot in recent years, fine struc-
tures in solar radio bursts can be detected. In this study, we use 
data obtained by Solar Broadband Radio Spectrometer (SBRS) 
of China [1].The SBRS is with characteristics of high time res-
olution, high-frequency resolution, high sensitivity, and wide 
frequency coverage in the microwave region. Its functionality 
is to monitor solar radio bursts in the frequency range of 0.7–
7.6 GHz with time resolution of 1–10 ms. It consists of five 
‘component spectrometers’, which work in five different wave 
bands (0.7-1.5, 1.0-2.0, 2.6-3.8, 4.5-7.5, and 5.2-7.6 GHz, re-
spectively). The SBRS monitors the solar radio bursts all day 
long and produces mass data for researchers to analyze. In the 
observed data, burst events are rare and in the meantime always 
along with interference. Thus it seems impossible to identify 

whether the data containing bursts or not and figure out which 
type of burst it is by manual operation timely. To the end, clas-
sifying the observed data automatically will be highly benefi-
cial to the solar radio astronomy study. 

Nowadays, based on the available mass of data of SBRS, 
many algorithms have been developed for learning the repre-
sentation with unsupervised and supervised methods, especially 
the deep learning methods. Recent methods based on deep 
learning [2] have demonstrated state-of-the-art performance in 
a wide variety of tasks, including visual recognition [3] [4] [17], 
audio recognition [5] [6], and natural language processing [7] 
[15]. These techniques are super powerful because they are 
capable of learning useful features directly from both unlabeled 
and labeled data to avoid the need of hand-engineering, which 
will be much helpful to the automatic analysis of the solar radio 
spectrum. While analyzing a large volume of data, the simple 
and widely used method is principal components analysis 
(PCA), which finds the directions of greatest variance in the 
data set and represents each data point by its coordinates along 
each of these directions. However, PCA cannot well learn a 
good representation of the data for the targeting task well. 
Moreover, autoencoder (AE) can also be employed to learn the 
representation from the available mass data. AE is an unsuper-
vised learning algorithm that applies back-propagation by set-
ting the target values to be equal to the inputs. AE tries to learn 
a function which makes the input similar to the output of the 
function. In other words, it is trying to learn an approximation 
to the identity function, so as to output of the network that is 
similar to the input. The identity function seems a particularly 
trivial function to be trying to learn. But by placing constraints 
on the network, such as by limiting the number of hidden units, 
interesting structure about the data can be learnt. Therefore, AE 
is very helpful for representation learning. Also there are many 
other variations of AE, such as denoising AE [8], stacked AE 
(SAE) [9]. However, these AEs treat the input equally, which 
cannot distinguish the characteristics between different input 
modalities well. Thus the interaction between different modali-
ty inputs cannot be well captured. In [10], the authors proposed 
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Figure 1.  The framework of the multimodal learning. 

an automatic dimensionality reduction to facilitate the classifi-
cation, visualization, communication, and storage of high-
dimensional data through an adaptive, multilayer ‘encoder’ 
network to transform the high-dimensional data into a low-
dimensional code and a similar ‘decoder’ network to recover 
the data from the code. Using random weights as the initializa-
tion in the two networks, they can be trained together by mini-
mizing the discrepancy between the original data and its recon-
struction. Then the representation can be learned in an unsu-
pervised manner. The network can be further named as deep 
belief network (DBN). With the achievements of these learning 
methods, we can learn the representations of the solar radio 
spectrums, which will be employed for further solar radio spec-
trum analysis, such as clustering, classification, and so on. 

In this paper, we make the first attempt to employ the mul-
timodal learning method, specifically the AE with the struc-
tured regularization (SR), to learn the representation of the so-
lar radio spectrum. Based on the representation, we can further 
classify the solar radio spectrums into different categories au-
tomatically. The main contributions of the paper are as follow-
ing. 

The first attempt is made to employ the multimodal learn-
ing method to automatically learn the representation of 
solar radio spectrums. 

A group of pre-processing methods, including channel 
normalization, denoising, scaling, channel competition, 
and so on, are raised for the representation learning and 
classification tasks of solar radio spectrum. 

By evaluating the learnt representation on the built solar ra-
dio spectrum database, the experimental results demonstrate 
that the multimodal learning method can help to automatically 
analyze the solar radio spectrum, specifically the classification. 
In addition, it is superior to the single modality of deep learning, 
which was presented in our previous work [11]. 

The rest of the paper is organized as following. In Section II, 
the multimodal learning architecture is introduced to learn the 
representation of the solar radio spectrum as well as the solar 
radio spectrum pre-processing to be fed into the multimodal 
neural network. Section III gives the experimental results on 
representation learning and classification. And the final section 
concludes the paper. 

II. LEARNING FOR CLASSIFICATION OF SOLAR RADIO 
SPECTRUM  

A. Multimodal Learning Architecture 

The proposed learning architecture is illustrated in Figure 1, 
which takes different numbers and types of modalities as the 
input. The output will be the recognition results, which not only 
considers each modality property but also accounts for the in-
teractions between different modalities. The proposed multi-
modal learning architecture is built by stacking the softmax 
layer on top of the layer of AE with structured regularization.  

Eq. 1 represents the global function of the proposed method. 
 is the label output by the multimodal network.  is the 

function calculating the weights mapping from the visual layer 

to the first hidden layer. The algorithm that implements  
is AE with SR. AE is a simple learning circuit aims to trans-
form inputs into outputs with the least possible amount of dis-
tortion. However, the correlations between different modalities 
cannot be well learned and represented by AE. To overcome 
this limitation, we employ SR on AE, which allows the net-
work to distinguish different modalities for individual treat-
ments. SR employed on AE could help to distinguish and learn 
the representation from different multimodal inputs. With SR 
on AE, we get the joint representations of the input signals, 
which is the input of the function . In our framework, 
softmax is employed as the classification function  for our 
multimodal learning architecture.  

                        (1) 

1) Autoencoder (AE) 

AE consists of two components, specifically the encoder 
and decoder. The encoder  encodes the input  to 
some hidden representation , while a decoder  
decodes the obtained hidden representation back to a recon-
structed version of , to make the reconstructed signal to be as 
close as possible to the input. Therefore, the encoder process 
can be viewed as a single mapping function : 

                         (2) 

where  represents the encoder output and  is the input of 
the encoder.  and  are the mapping weight and encoder bias, 
respectively.  is a non-linear function, which can employ sig-
moid, tanh, and rectified linear unit (ReLU) [16] function.  

2) Structured Regularization (SR) 

SR function is employed for AE with multimodal inputs 
inspired by [12] [13]. Suppose  as a  modality binary 
matrix, where  denotes the number of modalities and  indi-
cates the number of units in corresponding modality. For SR, 
each modality will be used as a regularization group separately 
for each hidden unit, applied in a manner similar to the group 
regularization, compared with the traditional regularization 
that treats each input unit equally and ignores the relationship 
and correlation between different modalities. SR is defined as: 

     (3) 
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(a) Flux values in a channel before denoising 

 
(b) Flux values in a channel after denoising 

Figure 2.  Flux values in a channel before and after denoising, 

 
(a) Solar radio spectrum before channel normalization 

 
(b) Solar radio spectrum after channel normalization 

Figure 3.  Solar radio spectrums before and after channel normalization. 
The horizontal axis denotes the sampling time, while the vertical axis 

indicates the frequency channel. 

where  indicates a Boolean function that takes a value of 1 if 
its variable is true, and 0 otherwise. The regularization function 
in Eq. (3) performs a direct penalty on the number of modali-
ties used for each weight without further constraining the 
weights of modalities with nonzero maxima. 

3) Integrating SR with AE 

By integrating SR with AE, the objective function for 
training the framework as presented in Figure 1 is represented 
as: 

 

                              (4) 

where  is the signal reconstructed by the decoder of AE. 
 is the number of the input nodes including all the modality 

features, and  is the number of the hidden nodes of the mul-
timodal AE.  is the weights of the multimodal AE by in-
troducing SR.  is the parameter to balance the error and the 
regularization terms.  

By integrating SR into AE, the obtained representation  
only connects to partial nodes in the first hidden layer. As Eq. 
(3) shows, to minimize , the value of  should be 
0 as far as possible, leading to some nodes in the first hidden 
layer connected to only part of the nodes in the visual layer. AE 
with SR demonstrates that the multimodal network could dis-
tinguish different modalities and learn the correlations between 
them automatically. 

B. Pre-processing of Solar Radio Spectrums 

Different from previous research [11], we assumed that var-
iations of each channels in a solar radio spectrum can represent 
more detailed characteristics of solar activities and are more 
significantly relative to an entire spectrum, which are regarded 

as different modalities for the representation learning. In this 
paper, we processed the solar radio spectrums in channel level 
to form the input vectors. 

1) Solar Radio Spectrum  

As mentioned before, SBRS contains several channels to 
monitor the solar burst in different frequencies. Therefore, the 
signal sensed from each channel will be treated individually. In 
total, there are 120 channels working toward the solar radio 
information captured at the same time. Moreover, each cap-
tured file contains both left and right circular polarization parts, 
which should be separated and processed individually for fur-
ther processing. We extract the captured data from each chan-
nel as a row vector, which is stored according the sensing time. 
Afterwards, all the vectors from the 120 channels will be as-
sembled together to form a matrix, which can be used for visu-
alization and further processing. As there are 120 channels and 
2520 sensing time points in 8 ms recorded file, the size of ma-
trixes is 120×2520.  

2) Channel Denoising and Normalization 

The raw data captured by solar radio antenna is of strong 
white noise, which may faint the valuable information, as illus-
trated in Figure 2 (a). To suppress the noise and make the sig-
nals more expressive, Gaussian filter is employed for denoising. 
Each channel is processed by a Gaussian kernel with 

 respectively, the effective signal reveals more obviously 
as shown in Figure 2 (b). 

It can also be observed that there are numbers of horizontal-
stripes-like interference signals in almost each picture, as illus-
trated in Figure 3 (a). This phenomenon is named as the chan-
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Figure 4.  The framework of the multimodal learning. 

nel effect in solar radio observation, which is caused by differ-
ent gains of different channels. The channel effect may disturb 
the presentation of bursts. In order to eliminate the channel 
effect, we propose one method for channel normalization, 
which is formulated as following: 

                                 (5) 

where  is the matrix of a solar radio spectrum,  is the matrix 
after performing the channel normalization,  and  de-
note the local mean and global mean values, respectively. The 
local mean  is the mean of each channel.  accounts for 
the mean of whole matrix.  is to alleviate the effect of une-
ven channel gain, while the  compensates each channel by 
adding a global background. The matrix after performing the 
channel normalization is illustrated in Figure 3 (b). It can be 
observed that the channel normalization makes the solar radio 
burst easier to be detected. 

3) Down-sampling with Channel Competition 

The radio emission will be greatly enhanced when a solar 
burst occurs, like a solar flare or CME, which results from a 
local release of energy in the Sun's low corona. Such process 
would produce numerous radio spectral structures observed 
with radio spectrometer. As solar radio bursts occur, the flux 
values of solar radio spectrum will increase in certain channels. 
Thus, we defined an activity term to discriminate the difference 
between channels as: 

 (6) 

where  represents the maximum flux value of channel  mi-
nus the mean of it.  is assumed to reflect the activities of 
channels in spectrum, which means we can exploit the inner 
structural information within a spectrum instead of that at im-
age level.  

In this paper, we select 10 channels from 120 channels by 
ranking , and then downsample each channel with bicubic 
filter. The original spectrum matrix with the size of 

 is reduced to . Compared to the previous down-
sampling method in [11], the proposed method selects more 
representative channels and maintains more details in each 
channel. Furthermore, the dimension of input data to deep 
learning network is smaller than previous one. 

C. Network for Solar Radio Spectrum Classification
We propose a simple network for classification of solar ra-

dio spectrum. A softmax layer is added on the top of the mul-
timodal learning architecture, which takes the joint representa-
tions as inputs, and outputs the classification results for each 
spectrum. The classification layer will determine the probabili-
ties of an input spectrum belonging to each given class. The AE 
with SR is employed to establish the multimodal learning net-
work. Due to limited number of labeled solar radio spectrums, 
only one hidden layer is employed in this work for avoiding 
overfitting. Then, we propose an  structure network 
as shown in Figure 4.  is defined as the classification nodes 
which give the probabilities of each input belonging to the giv-
en classes (spectrum types).  indicates the size of the data 
from all the multimodal inputs, which is 2000 in this work.  
denotes the size of the hidden layer nodes, which is 50 in this 
work. 

III. EXPERIMENTAL RESULTS 
In order to evaluate the proposed method, a solar radio 

spectrum database we recently built is employed. Firstly, the 
details of the database are introduced. Then, the multimodal 
learning for solar radio spectrum classification is tested on the 
database. 

A. Solar Radio Spectrum Database 
The SBRS of China [1] is designed to acquire dynamic 

spectrograms of solar microwave bursts with the combination 
of wide frequency coverage (0.7–7.6 GHz), high temporal 
resolution, high spectral resolution, and high sensitivity. It 
consists of five ‘component spectrometers’ which operate in 
five different wave bands. The time resolution of sensing the 
solar microwaves varies for different wave bands. For exam-
ple, the time interval for the wave band with frequency cover-
ing 2.6-3.8 GHz is 0.2s. All the five ‘component spectrometers’ 
work simultaneously to make a full view of the solar micro-
wave bursts from the perspective of sensing frequencies. De-
tailed information about SBRS can be referred to [1]. 

The statistics of solar radio data shows that there are only a 
small portion of solar radio bursts in all captured data. There 
are in total millions of microwaves captured by the end of 
2001. However, there are only hundreds of them are labeled as 
burst as shown in Table I. It can be observed that the burst 
microwaves captured in the 2.6-3.8 GHz frequency range are 
more easily detected by the human viewers. It means that the 
captured microwaves in the frequency range are more repre-
sentative to indicate whether the spectrums contain bursts or 
not. Therefore, the most representative solar microwaves in 
the frequency range are employed to build the dataset for our 
experimental results. 

In this dataset, 4408 observational data files are labeled by 
the experts into five categories (0=no burst or hard to identify, 
1= weak burst, 2=moderate burst, 3= large burst, 
4=calibration). Since the objective of our experiment is to dis-
tinguish the bursts from others, the solar radio spectrums in 
the dataset have been selected and relabeled to form a new 
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database for the experiment. Three coarse categories, specifi-
cally the ‘bursts’, ‘non-burst’, and ‘calibrations’ are included 
in the database. The files of the ‘burst’ category contains at 
least one solar radio burst and the ‘non-burst’ stands for files 
not containing an identifiable burst. The ‘calibration’ type 
means files with calibration signal which is used to make sure 
the value obtained by the solar radio telescopes is effective. In 
calibration spectrums, the flux values vary non-continuously 
within each channel. 

TABLE I.  THE NUMBER OF BURSTS OBSERVED WITH EACH COMPONENT 
SPECTROMETER OF SBRS BY THE END OF 2001 

Freq. range (GHz) 0.5–1.5 1.0–2.0 2.6-3.8 4.5-7.5 5.2-7.6 

Num. of bursts 108 526 921 233 550 

As introduced before, by performing the imaging process, 
each observational data file can be converted to two spectrums 
with the size of . Each row denotes the frequency 
for capturing the microwave, while the column indicates the 
sensing time of the microwave. Furthermore, the channel nor-
malization, down-sampling, denoising processes are performed, 
which generate a  matrix. With the expertise of solar 
radio activity, the solar radio spectrums are labeled as ‘bursts’, 
‘non-burst’, and ‘calibrations’. The detailed information about 
the labeled data in the built database is illustrated in Table II. 

TABLE II.  THE DETAILS OF THE DATABASE 

Categories 0 1 2 3 4 total 

Spectrum Number 6670 618 268 272 988 8816 

(0=no burst or hard to identify, 1= weak burst, 2=moderate burst, 3= large burst, 4=calibration) 

B. Performance Comparisons 
The experimental settings are as follows. 900 ‘burst’, 800 

‘non-burst’, 800 ‘calibration’ are randomly selected for train-
ing from the dataset. The rest are for testing. After prepro-
cessing, each spectrum is converted into a vector with 10 
modals (keep 10 channels). After that, these vectors are im-
ported into the proposed multimodal network. The model clas-
sifies a solar radio spectrum successfully when the category 
with highest possibility output by the algorithm matches the 
labeled category of the spectrum data input. 

In order to efficiently assess the performance of the pro-
posed algorithm, we compare it with previous DBN method 
and a PCA+SVM model for classification of solar radio spec-
trum [11]. 

It is worth noting that the receiver operating characteristic 
(ROC) [14] analysis is used to evaluate the performance, 
which is more general and reliable than recognition accuracy. 
The classification results can be found in Table III. From the 
table, we can notice that the proposed multimodal network is 
better than DBN [11] with respect to the classification of 
‘burst’. The gain may be that the multimodal learning exploits 
the differences between different modalities and learn their 
interactions for final classification. It can be also observed that 
there is only insignificant loss on ‘non-burst’. In the future, we 
will consider fusing the merits of DBN and multimodal learn-

ing to develop better representation learning networks for solar 
spectrum classification. 

TABLE III.  PERFORMANCE OF MULTIMODAL, DBN AND PCA+SVM 

 Multimodal DBN PCA+SVM model 

 TPR FPR TPR FPR TPR FPR 

Burst 70.9% 15.6% 67.4% 13.2% 52.7% 26.6% 

Non-burst 80.9% 13.9% 86.4% 14.1% 0.1% 16.6% 

Calibration 96.8% 3.2% 95.7% 0.4% 38.3% 72.2% 

IV. CONCOLUTIONS 
The paper makes the first attempt to employ multimodal 

learning network for classification of the solar radio spectrums. 
The solar radio spectrums are pre-processed to generate differ-
ent modalities to be fed into the multimodal learning network. 
The proposed multimodal learning architecture is demonstrated 
to better exploit the structural information within different mo-
dalities, and therefore a better performance of the proposed 
multimodal network is achieved.  
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