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Visual tracking is a challenging task in many computer vision applications due to factors such as
occlusion, scale variations, background clutter, and so on. In this paper, we present a robust tracking
algorithm by representing the target at two levels: global and local levels. Accordingly, the tracking
algorithm is composed of two parts: global and local parts. The global part is a discriminative model
which separates the foreground object from the background based on holistic features. In the local
part, we explore the target’s local representation by a set of filters convolving the target region at each
position. Then, the global part and local part are integrated into a collaborative model to construct the

final tracker. Experiments on the tracking benchmark dataset with 50 challenging videos demonstrate the
robustness and effectiveness of the proposed algorithm, outperforming several state-of-the-art models.

© 2017 Elsevier Inc. All rights reserved.

1. Introduction

Visual tracking is one of the most important research topics in
multimedia processing and has been widely used in human behav-
ior analysis, video surveillance, security, military, transportation,
aerospace, and so on. Although significant progress has been made
in the past years [1-7], tracking still remains a challenging task,
since only ground-truth in the first frame can be used and the
target may undergo many challenges, such as illumination change,
partial occlusion, pose variation, and shape deformation, etc. All
these challenges may result in failed tracking.

To address the above challenges for robust tracking, various
representation schemes are introduced into tracking task, such
as pixel-based tracker [38], feature-based trackers (e.g. Haar-like
features [2,4,5], HOG descriptors [7,8]), sparse-based trackers [10,
31-37], subspace representation based trackers [29,30] and multi-
level quantization tracker [39].

As to feature-based trackers, prior approaches [2-11] focus on
exploiting hand-crafted features to describe the target. However,
these hand-crafted features are designed for certain scenarios.
Thus, they cannot be generalized for all generic objects. Tradition-
ally, hand-crafted features are followed by support vector machine
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(SVM) [12-14] to accomplish vision tasks like classification and
recognition. Recently, deep networks trained on large scale dataset
of image classification (e.g. Ref. [15]) can directly learn features
from raw data instead of hand-crafted features, and have demon-
strated great success in many vision tasks, such as object recogni-
tion [16], object detection [17], detection and segmentation [18],
and image classification [19]. Existing methods have also explored
the usage of deep networks for visual tracking. Li et al. [20] incor-
porate a three-layer convolutional neural network (CNN) trained
on-line for visual tracking. Zhou et al. [21] combine an ensemble
of deep networks for visual tracking. However, the two methods
have not demonstrated excellent results due to the lack of suf-
ficient training samples. To overcome the difficulty caused by a
limited amount of training samples, many researchers try to adopt
a transfer learning method by first pre-training a deep network
with a large number of auxiliary data and then transferring the
pre-trained model to online visual tracking. Wang et al. [22] train
a stacked denoising autoencoder on an auxiliary tiny image data
set to learn generic feature and then employ it for online track-
ing. Fan et al. [23] develop a human tracking algorithm that uses
fully convolutional network to learn a specific feature extractor.
Hong et al. [24] use pre-trained CNN features to construct target-
specific saliency maps for online tracking. All these methods treat
deep networks as black-box feature extractors. Zhang et al. [25]
recently present a simple two-layer convolutional network based
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tracker that does not need to be pre-trained with a large amount
of auxiliary data and has fully taken into account the similar local
structural and inner geometric information among the targets over
consequent frames. However, it only exploits the local information
of the target, while ignores the holistic information provided by
the target.

In this paper, we aim to integrate the advantages of both holis-
tic and local information from the target. Thus, the proposed al-
gorithm is made up of global part and local part. In the global
part, we establish a positive dictionary using samples close to the
target, while samples away from the target are used to establish
a negative dictionary. Then, global confidences are obtained based
on sparse reconstruction errors by using the positive and negative
dictionaries, respectively. In the local part, we extract local rep-
resentation by using a bank of filters convolving each candidate
and compute local similarities between the candidates and target.
Finally, the optimal location is estimated by maximizing the col-
laborative probability which combines global confidence and local
similarity. The main contributions of this paper are summarized as
follows:

(1) We define the global confidences through sparse reconstruc-
tion errors with positive and negative dictionaries, which can
distinguish the target from the background clutter accurately.

(2) A collaborative tracking model is proposed to utilize both
holistic and local information of the target.

(3) Our method is performed on the tracking benchmark dataset
with 50 challenging videos [26] and achieves favorable results
compared with state-of-the-art methods.

The rest of this paper is organized as follows. Section 2 intro-
duces the related work. Section 3 describes the proposed tracker
in details. Section 4 presents the quantitative and qualitative com-
parisons between the proposed tracker and some state-of-the-art
trackers. Section 5 concludes this paper.

2. Related work

There are rich literatures in object tracking and good reviews
can be found in Refs. [26-28]. Here, we present some most rele-
vant work which motivates our visual tracking research.

There are plentiful methods that focus on designing effec-
tive appearance representations. The holistic templates have been
widely used in visual tracking. Ross et al. [29] propose the IVT
method and introduce a low dimensional PCA subspace to han-
dle appearance variations, which has been further improved in
Ref. [30]. Mei and Ling [31] present a [y tracking method and
utilize a generative sparse representation of templates to account
for occlusion. However, heavy computational overhead in this ap-
proach hampers its tracking speed. Very recent efforts have been
made to improve the [; tracker in terms of speed and accuracy in
Refs. [32] and [33].

Meanwhile, the local templates have attracted much attention
due to their robustness to partial occlusion and deformation. Adam
et al. [1] use a set of local image patch histograms to represent a
target object. Liu et al. [34] represent a target object with the his-
tograms of sparse coding of local patches. In Ref. [35], Wang et al.
encode the local patches inside the target region and concatenate
the sparse codes of these patches to represent the target. Zhang
et al. [25] utilize a bank of filters to convolve the target region at
each position to extract useful local structural feature for the tar-
get representation. Moreover, some algorithms try to represent the
target by exploiting the combination of holistic and local templates
for tracking [36,37].
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Fig. 1. Flowchart of the proposed tracking algorithm.

3. The proposed tracker

In this paper, we represent the target at both global and local
levels. As illustrated in Fig. 1, the proposed tracking algorithm con-
sists of two parts: global and local parts which generate global and
local representations of the target respectively. Afterwards, the two
parts are integrated into a collaborative model for tracking. More
details are stated in the rest of this section.

3.1. Global sparse coding for visual tracking

Referring to the target in the first frame, a bunch of positive
and negative samples are extracted to establish positive dictionary
and negative dictionary. These two dictionaries construct a global
dictionary. To implement tracking task, each candidate target sam-
pled from subsequent frames is firstly sparsely decomposed on the
global dictionary. Then, a term named as global confidence is com-
puted based on the reconstruction errors using the two different
sub-dictionaries.

As shown in Fig. 2, we crop np positive samples from a circular
region specified by

Qt = {(Xpos, ypos)

\/(XPOS - XO)Z + (Ypos - }’0)2 <9 ]

in the first frame, where (xg, yo) and (xpos, ypos) denote the cen-
ter locations of the target object and positive samples, respectively.
Positive samples are warped to a canonical size (32 x 32 in our
experiments) and used for the construction of the positive dictio-
nary Dp. Then, n, negative samples are randomly drawn from the
region denoted by

Wo

|Xneg _X0| > a0

Q_={(Xneg»)’neg) YHeg_y0|Z %}7
where wq and hg stand for the width and height of the target ob-
ject, (xneg, yneg) denotes the centers of negative samples. (wyg, ho)
changes a lot with regard to different sequences and different
tracking objects (e.g., 107 x 87 for car4 sequence of Fig. 8 and
32 x 73 for doll sequence of Fig. 11). Similarly, negative samples are
warped and stacked together to form the negative dictionary Dj,.
In this way, we can obtain a global dictionary including positive
and negative samples.

Since the dimension of each column in global dictionary and
candidates is very high, and the corresponding gray-scale features
of them are highly redundant, we implement feature selection (see
Fig. 3) before sparse decomposition of candidates to extract dis-
criminative features as

2
min | D7s — p| + sl (1)
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Fig. 2. Workflow of global sparse coding for visual tracking.
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Fig. 3. The process of sparse feature selection.

where D = [Dp, Dy] € RK*T+) s the global dictionary com-
posed of n, positive samples and n, negative samples, K is the
dimension of gray-scale features before feature selection. Each ele-
ment of the vector p € R(p-+n)x1 represents the class label of each
sample, i.e. +1 for positive samples and —1 for negative samples.
The solution s of Eq. (1) is a sparse vector, which enables itself
to be used as a classifier. The index of the nonzero elements of s
corresponds to the selected feature dimensionalities of global dic-
tionary and candidates.

Given a candidate region, it can be represented by the global
dictionary with the coefficients « solved by

. 2
min |x = D'a||y + Alleelq (2)

where D’ = [D),, D;] € RK'x(p+m) and ¥ e RK'*1 denote the
global dictionary and the candidate after feature selection respec-
tively, A is a control parameter. Based on the assumption that a
target image region should produce a smaller reconstruction error
by using the positive dictionary, but vice versa by using the nega-
tive dictionary, we define the global confidence as follows.

&n

H (x) =
W=

(3)

2. .
where £, = X' = D'pap ||2 is the reconstruction error of the can-
didate x by using the positive dictionary, and o) is the corre-

sponding sparse coefficient vector. Similarly, &, = |x' — D'potn ||§
is the reconstruction error of the candidate x by using the neg-
ative dictionary, and o, is the corresponding sparse coefficient
vector. The variable p is a constraint factor to avoid dividing by
zero. The global confidence exploits the distinct properties of the
foreground and the background in computing the reconstruction
errors, which can effectively distinguish the target from a compli-
cated background.

3.2. Local convolutional features for tracking

Like most of trackers in the literatures, the proposed tracker is
performed on grayscale images. The color images are firstly trans-
formed into grayscale ones before performing tracking task. The
target and each candidate are warped to n x n (n = 32 in our
method) pixels. We use a sliding window of size w x w to densely
sample a set of overlapping local image patches Y ={Y1,Y>, ..., Y}
inside the warped target region, where Y; € RY*" is the i-th im-
age patch and = (n—w+1) x (n—w + 1). Then, the k-means
algorithm is applied to these local patches and d different clus-
ter centers can be obtained. Each cluster center is preprocessed
by subtracting the mean and [, normalization to construct the ob-
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Fig. 4. The processes of construction of object filters and convolution operation for getting object feature maps.
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Fig. 5. The processes of construction of background filters and convolution operation for getting background feature maps.

ject filters FO = {F{, FS, ..., F§}. Given an input candidate x, each
object filter F;’ convolves it and generates an object feature map
§9 € RM—wHDx(=w+D) "where S? = F? ® x and ® denotes the op-
eration of convolution. The whole process is shown in Fig. 4.

The background context around the target can help to discrimi-
nate the target from the background. As shown in Fig. 5, we choose
m background templates surrounding the target. Each background
template is partitioned into small local image patches. For each
background template, d different local image patches are selected.
Then, the average pooling method is applied to obtain the back-
ground filters as

FP = [Fﬁ’_ ZFI -

where F, 1 Fl e de are the selected d different patches of the
i-th background template Similarly, each background filter is pre-
processed in the same way as object filters. After preprocessing,
each background filter Ff’ convolves the candidate x and produces
a background feature map S? € RA-WHD*(=wHD) where Sb =
F}’ ® x. Taking into account both target and background context,
the final convolutional feature map is obtained by S; = S7 — Sf?.
Each convolutional feature map S; is converted to a vector f; €
RM=W+D?x1 anqd concatenated to form a representation.

p=L[f1. f2. ... fdl (5)

;ZF?A} (4)

i=1

where p € R"—"+1?xd i the representation of the candidate tar-
get x.

The similarity between the candidate x and the target is com-
puted by

L (%) :e*H'/f*P”; (6)

where i is target representation. This similarity measure is based
on local convolutional features, so we call it local similarity. Tar-
get representation i is generated by the background filters and
the object filters convolving the target region in the first frame.
It is updated every frame and the update scheme is presented in
section 3.4,

3.3. Collaborative tracking model

Visual tracking has been commonly carried out within the
Bayesian filtering framework. Given the observation set O; =
{o1,02,...,0¢} up to the frame t, our goal is to determine a pos-
terior probability p (s¢|0¢) by

p(se]10¢) o p (ot lse) f P (Stlse—1) P (Se—110¢—1)dst—1 (7)

where s; is the target state at frame t, p(s¢|s¢—1) is the mo-
tion model and p (o¢|s¢) is the observation model. The motion
model p (s;|si—1) describes the state transition between consec-
utive frames and is often set as Gaussian distribution p (s¢ [st—1) =
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N (s¢; s¢—1,Y_), where Y =diag (ox, 0y, 0s) is a diagonal covari-
ance matrix whose elements are the variances of the affine param-
eters. The observation model p (o |s;) estimates the likelihood of
observation o; at the state s; belonging to the target class. The par-
ticle filter is an effective realization of Bayesian filtering, in which
the state is predicted regardless of the underlying distribution. The
optimal state is obtained by the maximum a posterior estimation
(MAP) over N samples,

AN i i AN
S = argmax p (ot ‘s[ ) p (st ‘st_l ) (8)

St
where si is the i-th sample at frame t. The observation model
p (ot |s't) in (8) plays a key role in visual tracking. In our algorithm,
the observation model is constructed by

p (ot ‘s’t) & VH (s’t) +(1-v)L (s}) 9)

where H (s’t) is the global confidence of sample s{ according to (3),
L (sé) is the local similarity of sample s{ according to (6), v is the
weight for balancing the contributions of these two parts. From (9),
it can be observed that we combine the global and local parts by
the way of weighted balance rather than by simply multiplying the
confidences of these two parts.

3.4. Model updating

Since the appearance of an object often changes significantly
during the tracking process, the update scheme is important and
necessary. In this paper, we develop an update scheme, which up-
dates the global part and the local part independently.

For the global part, we update the negative dictionary every
several frames (5 in our experiments). The n, new negative sam-
ples {(xneg, Yneg) “xneg —X| = % |yneg — v = I } are collected
far away from the current tracked target to update the negative
dictionary, where (x*, y*) denotes the center position of the cur-
rent tracked target, w* and h* denote the width and height of the
current tracked target. The positive dictionary remains the same in
the tracking process. As the global part is a discriminative model
and aims to distinguish the foreground from the background, it is
important to ensure that the positive dictionary is correct.

For the local part, the object filters are fixed during the tracking
process, alleviating the drift problem effectively. Similar strategy
has been adopted in [37,41,42], in which one single scale or multi-
scale static dictionaries learned from the first frame are exploited
to sparsely represent the tracked target. We extract background
templates from the image regions around the tracked target to up-
date the background filters. Motivated by the work [40], we utilize
the following object function to de-noise the representation of the
tracked target, and make it more robust to appearance variation.

o ; 1,1 2
¢ =argminiq |I¢II1+EII¢—CII2 (10)
@

where ¢ € RA="+D%d is 3 column vector by concatenating all
the elements of representation of the tracked target, Aq is set to
A1 = median (abs (c)). The solution of the above function can be
achieved by a soft thresholding function

A
@ =sign (c)max (0, abs (c) — A1) (11)
where sign (e) is a sign function. <?J is adjusted to have the same

size as target representation . In order to capture the appearance
changes, the target representation is incrementally updated by

AN
Ye=nYr1+ A -1 ¢ (12)

where 7 is the update rate, v;_; is the target representation at

frame t — 1 and (ﬁt is the denoised representation of the tracked
target at frame ¢. This incremental update scheme not only adapts
to the target appearance variations, but also alleviates the drift
problem. The main steps of the proposed algorithm are summa-
rized in Algorithm 1.

Algorithm 1 The proposed tracking algorithm.

Input: Global dictionary D, object filters F°, background filters qu, target state

stA_l, target representation y_q.

N

i=1

: For each particle s;, compute its global confidence and local similarity using
Eq. (3) and Eq. (6). ) )

: Calculate the observation likelihood p(o¢ |s}) of each particle s; by Eq. (9).

1: Sample N candidate particles {s{} with the motion model p (s; ’5[11 )

N

: Find the tracked target sAt through the maximal observation likelihood.
: Extract negative samples to update the global dictionary D every five frames.
: Draw background templates to update background filters Ff every frame.

N s W

: Compute the denoised representation rﬁt of the tracked target by Eq. (11) and
update target representation v by Eq. (12).

A .
Output: Tracked target s; and target representation ;.

4. Experimental results
4.1. Experimental setup

The numbers of positive samples n, and negative samples n,
are 50 and 200, respectively. The sampling radii of positive samples
is set as d = 1. The regularization parameter A in Eq. (1) is set to
be 0.001. The variable A in Eq. (2) is fixed to be 0.01. The size of
the filter is set as 6 x 6 (w =6) and the number of filters is set as
100 (d = 100). The variance matrix of affine parameters is set as
¥ =diag (4,4,0.01). In our approach, N = 600 particles are used.
The number of background templates m is 20. The update rate n
in Eq. (12) and the weight v in Eq. (9) are set as 0.95 and 0.5,
respectively.

4.2. Evaluation metrics

To evaluate the performance of our proposed tracker, we con-
duct experiments on 50 fully-annotated videos of the tracking
benchmark dataset [26]. These videos cover different challenging
situations in object tracking: low resolution (LR), in-plane rotation
(IPR), out-of-plane rotation (OPR), scale variation (SV), occlusion
(0CC), deformation (DEF), background clutters (BC), illumination
variation (IV), motion blur (MB), fast motion (FM), and out-of-
view (OV). With the same initial positions of the targets in the
first frame, we compare with several state-of-the-art tracking al-
gorithms including KCF [7], CNT [25], ASLA [10], SCM [37], Struck
[4], TLD [9], VID [3], TGPR [11], and DLT [22].

For quantitative evaluation, we use the precision plot and the
success plot to evaluate all the trackers. The success plot is based
on the overlap ratio and illustrates the percentage of frames where
the overlap ratio between the tracked bounding box and the
ground truth bounding box is higher than a threshold ¢ € [0, 1].
The area under curve (AUC) of each success plot is used to rank the
tracking algorithms. Meanwhile, the precision plot demonstrates
the percentage of frames where the distance between the tracked
target location and the ground truth location is within a given
threshold. We report the results of one pass evaluation (OPE) based
on the average success and precision rate for all the trackers.

4.3. Quantitative comparisons

Fig. 6 shows the precision plots and success plots which illus-
trate the performance of the 10 tracking algorithms on 50 videos.
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Fig. 6. The success plots and precision plots of OPE for the 10 trackers. The performance score of precision plot is at error threshold of 20 pixels. The legends show the
precision scores and AUC values for each tracker. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)
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Fig. 7. Qualitative results of the 10 trackers over sequences Jogging2, mhyang and skatingl, in which the targets undergo deformation. (For interpretation of the references to

color in this figure, the reader is referred to the web version of this article.)

Note that all the plots are generated by using the code library
from the benchmark evaluation [26]. As for CNT [25], KCF [7],
TGPR [11] and DLT [22], we obtain the results by using the source
codes provided by the authors. The proposed tracker ranks first
based on the success rate while third based on the precision rate.
In the precision plot, the precision score of our method is 0.627,
which is slightly lower than the TGPR method (0.634) but per-
forms better than the CNT method (0.613), the Struck method
(0.610) and the SCM method (0.608). In the success plot, the AUC
of the proposed algorithm achieves 0.517, which outperforms the
CNT method (0.503), the TGPR method (0.503), the Struck method
(0.474) and the SCM method (0.499). The proposed method per-
forms better than the CNT method due to the consideration of the
local information and holistic information of the target. Moreover,
we note that the KCF and TGPR methods achieve higher preci-
sion scores than our method, but lower AUC scores. The main
reason for this is that the two methods predict the location of
the target precisely but don’'t handle scale variations of the tar-
get well.

4.4. Qualitative comparisons

We select sixteen challenging sequences including deformation,
illumination variation, occlusion, background clutter, scale varia-
tion and pose change to evaluate our proposed tracker. The exper-
imental results on these videos are illustrated in Figs. 7-12.

Deformation: Fig. 7 shows the tracking results in three se-
quences where the targets undergo shape deformation. In the Jog-
ging2 sequence, the target undergoes both occlusion and deforma-
tion. The ASLA, Struck, KCF, VID and DLT methods can’t recapture
the target and undergo large drift when the person goes across
the lamp post and reappears in the screen (e.g. #100, #150 and
#250). The TLD method locks on to another person at frame #100,
but it can obtain the correct target again using a reinitialization
mechanism in the subsequent frames. On the contrary, the TGPR,
CNT, SCM and our method perform well throughout the sequence.
For the mhyang sequence, the ASLA, DLT and our method perform
better than other methods and achieve higher overlap rate. The
target in the skatingl sequence undergoes significant appearance
variation due to non-rigid body deformation and drastic illumina-
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Fig. 8. Qualitative results of the 10 trackers over sequences car4, trellis and cardark, in which the targets undergo illumination changes. (For interpretation of the references

to color in this figure, the reader is referred to the web version of this article.)
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Fig. 9. Qualitative results of the 10 trackers over sequences faceocc2, girl and woman, in which the targets undergo heavy occlusion or partial occlusion. (For interpretation
of the references to color in this figure, the reader is referred to the web version of this article.)

tion variation. The ASLA, SCM, VTD and our method perform better
than other methods.

Illumination variations: Fig. 8 demonstrates the tracking results
in three sequences with illumination variations. In the car4 se-
quence, the target suffers from illumination and scale variations.
The VID method drifts off the target after the target passes
through the bridge (seen from #240, #400 and #500). The TLD
method drifts away from the target when the target undergoes
drastic illumination change at frame #240. Although the TGPR,
Struck and KCF methods can successfully track the target, they
don’t handle scale variations well (e.g. #400 and #500). In con-
trast, the CNT, DLT, SCM, ASLA and our method are able to achieve

accurate results in terms of both location and scale due to the
affine motion model. In the trellis sequence, the person walks
from a dark place to a bright environment, where the target meets
with significant illumination variations. The TLD and VTD meth-
ods drift away to background (e.g. #300, #350, and #425). The
SCM and ASLA methods lose the target at frame #425. The DLT
method fails to track the target from frame #300. The Struck and
our method are able to track the target with better accuracy than
the CNT, TGPR and KCF methods. In the cardark sequence, the tar-
get moves in a night scene with low contrast and illumination
change. The TLD method drifts off the target from frame #175
and loses the target at frame #357. The VTD and DLT methods
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Fig. 10. Qualitative results of the 10 trackers over sequences singerl and subway, in which the targets undergo background clutters. (For interpretation of the references to

color in this figure, the reader is referred to the web version of this article.)
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Fig. 11. Qualitative results of the 10 trackers over sequences freeman1, doll and freeman3, in which the targets undergo scale variations. (For interpretation of the references

to color in this figure, the reader is referred to the web version of this article.)

lose track of the target at frame #357. The Struck, CNT, ASLA,
SCM, TGPR and our method perform well throughout the entire
sequence.

Occlusion: As shown in Fig. 9, the tracked objects in faceocc2,
girl and woman sequences encounter heavy occlusion or partial
occlusion. In the woman sequence, the target experiences pose
variation together with frequent long-time partial occlusion. Ex-
cept for the TLD, VID and ASLA methods, the other seven methods
perform well in this sequence. In the faceocc2 sequence, the tar-
get undergoes heavy occlusion. Most trackers are able to track the
target from the start to the end. However, the CNT method drifts
away from the target from frame #600 to frame #812. The ASLA
method doesn’t perform well at the end (seen from #812). The
target in the girl sequence undergoes rotation and partial occlu-
sion. The ASLA, SCM, Struck and our method perform better than
other methods. The robustness of our method against occlusion
attributes to local appearance update scheme in which the soft
thresholding strategy effectively reduces the influence of occlusion.

Background clutter: Fig. 10 shows some screenshots of the track-
ing results in the singerl and subway sequences in which the
targets appear in background clutters. The singerl sequence is

challenging as the background is cluttered and the target expe-
riences illumination variations. The TGPR method severely deviates
from the target when significant illumination variations occur (e.g.
#160, #200, and #250). Furthermore, the target undergoes large
scale variations. Although the VTD, KCF and Struck methods can
successfully track the target, they fail to track scale variations. The
CNT, ASLA, SCM, DLT and our method perform better compared
with other methods and achieve favorable results. The subway se-
quence contains numerous challenges, such as background clutter,
occlusion and pose change. The DLT method can’t track the tar-
get correctly from the start of the sequence (e.g. #20). The ASLA,
CNT, VTD and TLD methods fail to track the target and lock onto
a wrong target (seen from #50, #90 and #175). The Struck, TGPR,
SCM, KCF and our method precisely keep track of the target to the
end. Our method performs well in this sequence as discrimina-
tive features are selected to separate the target from the cluttered
background in the global part.

Scale variations: Fig. 11 illustrates some results over three chal-
lenging sequences with scale variations. In the freeman1 sequence,
a person undergoes a large scale variation in his face. The ASLA,
CNT, DLT and KCF methods cannot track the target from frame
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Fig. 12. Qualitative results of the 10 trackers over sequences david2 and dudek, in which the targets undergo pose change. (For interpretation of the references to color in
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#190 to the end. The TLD method performs unstably and loses
the target in the tracking process (e.g. #250 and #326). The SCM,
TGPR, VTD, Struck and our method can track the target well. The
target in the doll sequence undergoes a long time scale variation
and rotation. The ASLA, SCM and our method perform better than
other methods and achieve higher accuracy. In the freeman3 se-
quence, the TGPR method fails to track the target (e.g. #50, #200,
and #440). The VTD, Struck and KCF methods show large deviation
away from the target (seen from #300 and #440). The ASLA, SCM,
CNT, DLT and our method can successfully track the target till to
the end but the ASLA and our method perform best in handling
scale changes.

Pose change: Fig. 12 shows the comparison of all the trackers
when dealing with the challenge of pose change on two sequences,
where the frames in both two sequences are randomly selected
from the whole sequences. Obviously, the target object is the hu-
man face in both two sequences. In the david2 sequence, the man
swings his head randomly and changes pose all the time. After
checking all the frames of david2 sequence, we find that all the
methods except DLT can cope with this challenge well and suc-
cessfully track the target in the whole sequence. The drift occurs
to DLT in frames #352, #402 and #537. The reason for DLT fail-
ing is that the features learned offline from training set may not
well adapt to target appearance variations during tracking. In the
dudek sequence, the target goes through multiple challenges of
pose change, occlusion and background clutter. All the methods
can win these challenges to some extent and achieve good perfor-
mance. In Fig. 12, the bounding boxes in yellow color gives the
results of our proposed method. It can be observed that they can

precisely enclose the human face in all the frames, indicating our
proposed method do well for pose change challenge.

4.5. Discussion and analysis

4.5.1. Proposed algorithm with different combined weights

The weight v is an important parameter in our method, which
controls the trade-off between the contributions from global part
and local part. In this subsection, we investigate the tracking per-
formance of the proposed tracker with different weight v values.
Fig. 13 illustrates the quantitative results on the tracking bench-
mark dataset including the success plots and precision plots. Ex-
perimental results show that the proposed tracker performs best
when the value of v is 0.5.

4.5.2. Performance under different associative mechanisms

In this subsection, we compare the tracking performance of our
method based on two different combination way of global confi-
dence and local similarity. One is by means of multiplication. The
other is by means of weighted balance and the weight (v) is 0.5.
From Fig. 14, it can be observed that the latter gives better re-
sults. Thus, we integrate global confidence and local similarity in
the observation model by the way of weighted balance.

4.5.3. Effects of key components

To validate the effectiveness of key components of the proposed
method, we propose four variants of our method: (1) one utilizes
positive dictionary update in which we update positive dictionary
every five frames; (2) one does not involve the soft thresholding
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strategy; (3) one does not use local representation update scheme
of (12); (4) one employs dynamic object filters in which the object
filters are updated in the same way as background filters. Fig. 15
shows the quantitative results on the tracking benchmark dataset.
From the results, we can see that with positive dictionary up-
date, the AUC score of success rate reduces by 5.9%. Meanwhile,
proposed method without soft thresholding strategy and proposed
method without local representation update can only achieve AUC
score of 0.433 and 0.446, which are both lower than the pro-
posed algorithm with 0.517. Furthermore, the results for proposed
method with dynamic object filters are much worse than the pro-
posed algorithm. These results show that static positive dictionary,
soft thresholding strategy, fixed object filters, and local represen-
tation update components play crucial roles in the proposed algo-
rithm for robust visual tracking. They effectively alleviate and help
overcome some degree of drifting.

5. Conclusion

In this paper, we propose and demonstrate an effective and ro-
bust tracking algorithm which aims to mine the information of
the target from both global and local levels. In the global level,
holistic features are utilized to separate the target object from the
background via positive and negative dictionaries to encode sparse
coefficients. In the local level, we employ a bank of filters to ex-
tract local convolutional features of the target and obtain the local
representation of the target. Moreover, a soft thresholding strategy
is incorporated to de-noise the target representation. The contri-
butions of global level and local level are integrated into a unified
model. Extensive evaluation on the benchmark dataset demon-

strates the proposed tracking algorithm is competitive among all
compared algorithms.
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