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In this paper, a novel visual saliency detection method for stereoscopic images is proposed for the stereo- 

scopic image quality assessment (SIQA) by considering the disparity map and difference image between 

the stereo image pairs. Firstly, a new quaternion representation (QR) of each stereo image (left/right view 

image) is constructed, which comprises the image content, the inter-view disparity, and the difference 

map. The quaternion Fourier transform (QFT) is performed on the constructed QR to generate the vi- 

sual saliency maps for left and right views of stereoscopic image pairs, respectively. The generated visual 

saliency maps are further incorporated into the quality metrics for SIQA. Experimental results demon- 

strate that the visual saliency maps generated by the proposed method can help significantly boost the 

performance of SIQA, comparing with other visual saliency models proposed for stereoscopic images. It 

further confirms that the proposed visual saliency model can accurate depict the acuity property of hu- 

man visual system (HVS) in judging the perceptual quality of stereoscopic images. 

© 2017 Published by Elsevier B.V. 
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1. Introduction 

With the rapid development of content generation and display

technology, three-dimensional (3D) applications and services are

becoming more and more popular for visual quality of experiences

(QoE) of human viewers. The 3D contents displaying on the 3D

devices, such as the 3D films and video games, have now brought

vivid experiences to the consumers, which have attracted atten-

tions from not only researchers but also the industries. For these

applications, the quality of 3D content [1–4] is the most critical

part to guarantee the visual QoE. However, in the 3D processing

chain including capturing, processing, coding, transmitting, recon-

struction, retrieving, etc., artifacts are inevitably introduced due to

the resource shortage in processing [5,6] . Therefore, how to eval-

uate the perceptual quality of 3D content becomes a challenging

issue in 3D visual signal processing, which can automatically eval-

uate, control, and optimize the perceptual quality of 3D contents

during each processing stage. Then the best visual QoE can thus

be provided to the consumers. 
∗ Corresponding author. 
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As human eyes are the ultimate receivers of the 2D/3D images,

he properties of HVS are considered to develop an effective

erceptual IQA metric [7] . For example, the widely known just-

oticeable difference (JND) models [8,9] , which employ the

ontrast sensitivity function (CSF), luminance masking, and con-

rast masking properties of the HVS, have demonstrated good

erformances for perceptual image/video quality assessment.

oreover, the horizontal effect property of HVS has been modeled

n [10] , which demonstrate that the HVS orientation preference

an help improve the performance of IQA metrics. Among the HVS

roperties, visual saliency [11–18] is the most straightforward HVS

haracteristic for visual information processing. Visual saliency

ould selectively process the important part and ignore the unim-

ortant part of the visual information. For quality assessment,

he distortions presented in the salient regions would draw more

ttentions from the human viewers. In other words, the perceptual

uality of the salient region tends to represent the perceptual

uality of the whole image. Thus, it should be helpful to incorpo-

ate the saliency map into quality metrics. Over the past decades,

any computational models [11,14–18] for visual saliency detec-

ion have been proposed. Itti et al. proposed a bottom-up model

ased on the neuronal architecture of the primates’s early visual

ystem [14] . The saliency map is derived from the color, intensity,

nd orientation features. Harel et al. [15] employed the graph-
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ased theory to measure the saliency from the feature contrast.

n [16] , a saliency detection algorithm based on information max-

mization is proposed. Hou et al. proposed a spectral residual (SR)

pproach [17] , where the saliency map is computed by log spectra

epresentation of image in Fourier transform domain. Guo et al.

18] detected the video saliency map by considering the phrase

esidual (PR) features. For the application of image retargeting,

ang et al. [11] developed a saliency model in compression domain.

For 3D images, it is claimed that the artifacts of 3D content

ffect more on the perceptual quality [19,20] , compared with

he conventional 2D contents. Therefore, the modeling of visual

aliency properties on 3D content is expected to more accurately

valuate perceptual quality of the 3D contents. Nowadays, the

isual saliency models for 3D images have been researched by in-

orporating the depth cues from the 3D images. However, most of

xisting saliency models mainly focus on simulating the behavior

f human eye fixation of the image, which may not be suitable

or depicting the HVS property for quality perception. Thus, the

aliency map derived by these visual saliency models may not

e helpful for stereoscopic image quality assessment (SIQA), as

emonstrated in Section 5 . In order to handle the limitations of

hese saliency maps, we propose a novel saliency map model

argeting at SIQA. By incorporating the saliency map, the per-

ormances of the quality metrics can be significantly improved.

ompared with the state of the art works, our contributions are

isted as follows: 

• A visual saliency model for stereoscopic image targeting at SIQA

is developed. Compared with existing saliency models, which

explicitly require the depth image, the proposed saliency model

takes the stereoscopic image as the input to generate a better

saliency map for SIQA. 
• The stereoscopic image is represented as a new quaternion rep-

resentation (QR), which considers the spatial image content and

the inter-view relationships, specifically the disparity map and

the difference image between left and right views. With such

considerations, the depth cues are implicitly considered for

saliency map generation. And the experimental results demon-

strated that the new QR is very effective for saliency map gen-

eration, especially for SIQA. 

The rest of this paper is organized as follows.

ection 2 overviews the related works. In Section 3 , the pro-

osed visual saliency model for stereoscopic image is introduced.

ection 4 illustrates the incorporation of visual saliency map

nto the quality metrics for stereoscopic images. Experimental

esults are provided in Section 5 . Finally, conclusions are given in

ection 6 . 

. Related works 

As introduced in the previous section, many computational

odels for visual saliency have been proposed for 2D images

r video sequences. With the popularity of 3D images, several

tudies have been researched for the 3D images. In [21] , a stereo

ttention framework is proposed by extending the existing atten-

ion model from 2D to the binocular domain. Multiple perceptual

timuli are employed for a stereoscopic visual attention model in

22] . Region-of-interest (ROI) extraction method is proposed by

hamaret et al. for adaptive rendering [23] . The depth information

s employed to weight the 2D saliency map for generating the final

aliency map of 3D image in [22,23] . Ouerhani et al. [24] took the

epth cues into consideration to develop the 3D saliency map. And

otapova et al. [25] proposed a 3D saliency detection model for

obotics tasks by incorporating the top-down depth cues into the

ottom-up saliency detection method. Eye tracking experimental

esults are carried out on 2D and 3D images for depth saliency
nalysis in [26] , where 3D saliency map is calculated by extending

revious 2D saliency detection models. Moreover, the work in

27] also extended the saliency detection method for 2D images to

D images. The features of color and depth are employed in [28] to

enerate the saliency map for image segmentation. Wang et al.

29] , proposed a computational attention model for 3D images by

xtending the traditional 2D saliency models. More recently, Fang

t al. [12] proposed to incorporate the color, luminance, texture,

nd depth cues to generate the saliency map for 3D images. 

It can be observed that the key of visual saliency map for

D images are the depth cue. The 2D saliency models consider

he low-level features, such as color, intensity, orientation, and

o on. For 3D image, the depth information is critical for human

erception. Therefore, there are many research works on 3D visual

aliency by incorporating the depth information, such as [12,26,27] .

owever, the depth map of the 3D image, specifically the stereo-

copic image pairs are not always available, as the accurate depth

ap is hard to be sensed and captured. Also most of the real

D applications only provide the images of two different views

ithout the depth map. Therefore, the visual saliency models that

xplicitly incorporate the depth map are not practical for most

pplications. In this paper, in order to handle such drawbacks, we

o not explicitly use the depth map for modeling visual saliency.

nstead, the disparity map and difference image between different

iews are employed to derive the 3D visual saliency model. As

uch, the depth cue is implicitly considered. 

As human eyes are the ultimate receivers of the stereoscopic

mage, HVS properties such as binocular vision and depth per-

eption have been considered in developing the SIQA metrics.

or example, the depth (or disparity) information and 2D quality

etrics are fused together to analyze 3D visual quality in [30,31] .

he concept of cyclopean image was investigated to fuse the left

nd right views, where the monoscopic and stereoscopic quality

omponent are combined together in stereo-video quality assess-

ent metric designing [32] . To further improve the performance

f SIQA metric, the binocular fusion and rivalry properties are

idely investigated. For example, Wang et al. [33] proposed a

inocular spatial sensitivity (BSS) weighted metric based on the

inocular JND model [34] . Chen et al. [35] proposed a SIQA metric

o improve the prediction performance on asymmetric distortion

ypes. In [36] , the linear rivalry model was developed to exploit

he binocular rivalry property of HVS. Wang et al. [37] proposed

n information content and divisive normalization-based pooling

cheme to improve the performance of structural similarity metric

or estimating the quality of single-view images. The binocular

ivalry inspired multi-scale model is designed to predict the

nal quality of stereoscopic images. The HVS modeling can help

o improve the performances of SIQAs. Therefore, as the most

traightforward and important property of HVS, the visual saliency

eeds to be investigated further for quality assessment of the

tereoscopic image pairs. In this paper, we aim to develop an

ffective visual saliency model for stereoscopic images. Unlike the

isual saliency models in prior arts, the proposed saliency model

argets at the performance improvement of the SIQA. 

. Stereoscopic image visual saliency 

The framework of our proposed visual saliency model for

tereoscopic image is illustrated in Fig. 1 . As we target at a

aliency model for SIQA, two different saliency maps are gener-

ted by our proposed saliency models for the left and right view

mages, respectively. Firstly, each view image is represented as a

R by referring to the other view image. The QR of each view

mage roughly considers two different types of cues, specifically

he image content and disparity cues. The disparity cue considers

he inter-view correlation between left and right view image. The
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Fig. 1. The framework of our proposed stereoscopic image visual saliency model. For better visualization, the difference image is scaled within the range of [1,255]. And 

each pixel value of the disparity map with the addition of 128 is illustrated. 
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QR is further employed to derive the saliency map for each view

image. Afterwards, the obtained saliency map will be incorporated

into quality metrics to improve their performances thereafter. 

3.1. Stereoscopic image quaternion representation 

As discussed in Section 2 , saliency models for 2D images

mainly consider the low-level features, such as color and intensity

features, while saliency models for 3D images incorporate the

depth cues which are critical for 3D perception. Our new QR of

the stereoscopic image considers both the image low-level features

and depth information. 

3.1.1. Image content cues 

As discussed in [11,12] , the color and luminance information

is helpful for saliency detection of 2D images. Following their

approaches, we extract the color and luminance information for

visual saliency detection. However, instead of extracting low-level

features from the 2D image for characterizing the color and

luminance properties, we simply use the luminance and color

components of the image to construct the stereoscopic image QR

from the image content perspective. 

Firstly, each view of stereoscopic image pairs is converted

from RGB color space to YUV color space. Then the luminance

component Y denoted the image intensity is extracted as one ele-

ment of the stereoscopic image QR. The chrominance components

U and V of each view are merged together as another element

of the stereoscopic image QR. In our preliminary exploratory

experiments, different mer ging strategies are tested, such as

the averaging, the root of sum squared value, and so on. It is

demonstrated that different merging strategies slightly affect the

final results of SIQA. Therefore, the simple averaging process is

used to merge the U and V components together. The luminance

and chrominance components of the reference stereoscopic image

are illustrated in Fig. 2 . It can be observed that the luminance

component comprises most information of the left/right view

image. However, the chrominance component indeed depict the

salient color information, which will attract the viewers’ attention

and be helpful for visual saliency detection. 

As mentioned before, prior saliency models focus on extracting

the low-level features to depict the luminance and chrominance

components, which are believed to be useful for saliency detection.

In contrary,we use the raw image luminance and chrominance

component in this paper. We leave our saliency model to compose
nd make interactions between the luminance and chrominance

omponents to predict the saliency properties of the stereoscopic

mages. 

.1.2. Image disparity cues 

The depth cue is demonstrated to be critical for visual saliency

or 3D image, as the depth map depicts the correlations between

he two view images as well as the relative positions of the objects

n the image. Therefore, many research papers [12,24] employed

he depth map to derive the visual saliency map for the 3D image.

owever, the accurate depth map is always unavailable, as it is

ard to be sensed and captured. In this paper, instead of the

ruly captured depth map, the disparity map estimated from the

tereoscopic image is employed to depict their correlations. More-

ver, the difference image is further computed by referring to the

isparity map. These two images, regarded as the disparity cues

f the stereoscopic image, are employed as the disparity elements

f the stereoscopic image QR. As such, although without truly

aptured depth map, the relationship between the left and right

iew images as well as the object relative locations are implicitly

onsidered. 

We employed the work in [38] to obtain the disparity map

or each view image by referring to the other view image. The

ontrast-invariant correspondence between the two different view

mages are obtained by performing local matching using phase

nformation from a bank of Gabor filters. As the phase differences

or local matching is only used and not for explicitly computing

he correspondence, the filters of large spatial extent do not

eed to be computed for large shifts, which prevents degradation

f boundaries. And the algorithm is able to handle significant

hanges in contrast between the two images even if the changes

ary spatially over the image, and performs well in the presence

f noise. As the matching between the two view images is not

ur contributions, we do not provide the detailed approach here.

etailed information about the method can be found in [38] . 

We assume that the disparity map of the left view image

y referring to the right view image is obtained by the method

38] , which is denoted as M d . As the correspondence between the

mage pixels are bidirectional, the disparity map of the right view

mage referring to the left view image will be −M d . Then the

ifference image between the two view images is obtained by: 

 d (i, j) = I l (i, j) − I r (i, clip(1 , I width , j + M d (i, j))) (1)

here ( i, j ) is the pixel position. I l and I r are the left and right

iew images, respectively. I denotes the width of the image. I 
width d 
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Fig. 2. Elements for composing the stereoscopic image QR. From top to bottom: the left/right view image, the luminance component, the chrominance component, the 

disparity component, and the difference image component. 
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s the obtained difference image between the left and right view

mage. The clip ( · ) function ensures that the mapped pixel locates

ithin the image. The disparity map and the difference image

re illustrated in Fig. 2 . It can be observed that the disparity map

epicts the object locations within the image, while the difference

mage depicts the image differences introduced by inter-view

issimilarities. 

.1.3. Quaternion representation 

With the above processes, we obtain four elements for each

iew image from both the image content and disparity perspec-

ives. Afterwards, each view image I ( I can be left or right view

mage) is represented as a quaternion image ( I i , I c , I d , M d ), where I i 
nd I c denote the image luminance and chrominance components

espectively. In order to generate the visual saliency map, a new

uaternion representation (QR) I q [39] of each view image is repre-

ented by considering the four different quaternion elements as: 

I q = I i + I c μ1 + I d μ2 + M d μ3 

where, μ2 
i = −1 , i = 1 , 2 , 3 (2) 

μ1 ⊥ μ1 , μ2 ⊥ μ3 , μ3 ⊥ μ1 

μ3 = μ1 μ2 
 symplectic form of I q can be further expressed by: 

I q = f 1 + f 2 μ2 , 

where, f 1 = I i + I c μ1 (3) 

f 2 = I d + M d μ1 

In [18,40] , a quaternion image is composed to depict each

rame of the video sequence. For the quaternion image in [18] ,

ne intensity element, two color elements, and one motion ele-

ent are employed to compose the quaternion image. For [40] ,

ne intensity element and three motion elements (considering

he motion vectors in two dimension and the prediction error)

re used to compose the quaternion image. Their quaternion

epresentations are not practical for stereoscopic image. In this

aper, we consider both the image content and disparity cues

o compose the quaternion image, which not only includes the

ow-level features, such as intensity and color from 2D image, but

lso considers the depth information for 3D perception, such as

he disparity map and the difference image. These four elements

re expected to compose and interact with each other to generate

he visual saliency of the stereoscopic images. 
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3.2. Quaternion representation based stereoscopic image visual 

saliency (QRSIVS) 

As demonstrated in [18,40] , the phase spectrum is employed to

generate the saliency information for each video frame. Providing

an image I ( i, j ), the saliency map is generated by: 

SM (i, j) = g(i, j) ∗ ‖ F −1 (e i ·p(x,y )) ) ‖ 

2 , (4)

where, f (x, y ) = F (I(i, j)) 

p(x, y ) = P ( f (i, j)) 

where F and F −1 denote the Fourier transform and inverse Fourier

transform, respectively. f ( x, y ) is the Fourier representation of the

given image, p ( x, y ) denotes the phase information of the f ( x, y ).

g ( i, j ) is a smoothing filter. The saliency map SM is generated by

only considering the phase spectrum of the given image. 

As a quaternion image is constructed for each view image, the

quaternion Fourier transform (QFT) [39] is thus employed instead

of Fourier transform to generate the corresponding visual saliency

map. For the quaternion image illustrated in Eq. (3) , the QFT is

performed according to: 

I Q (u, v ) = F 1 (u, v ) + F 2 (u, v ) μ2 , (5)

where 

F i (u, v ) = 

1 

MN 

M−1 ∑ 

m =0 

N−1 ∑ 

n =0 

e −ν1 2 π( m v M + nu 
N ) f i (n, m ) , (6)

where ( n, m ) and ( u, v ) denote the locations in the spatial and

frequency domain. N and M indicate the image height and width,

respectively. f i , i ∈ {1, 2} is obtained from Eq. (3) . F i is the obtained

Fourier representation of f i . The QFT I Q of the quaternion image I q 
can be further expressed in the polar form as: 

I Q = ‖ I Q ‖ e μ·p (7)

where p is the phase spectrum of the Fourier representation I Q ,

and μ is a unit pure quaternion. 

As mentioned before, only the phase spectrum is enough

to construct the visual saliency map. Therefore, only the phase

spectrum of I Q is preserved to generate the saliency map. The mag-

nitude value ‖ I Q ‖ is set as 1 to eliminate the affection of the mag-

nitude spectrum. The QFT representation is further modified as: 

I m 

Q = e μ·p (8)

Afterwards, the inverse QFT is performed on I m 

Q 
, which is defined

as: 

f m 

i (n, m ) = 

1 

MN 

M−1 ∑ 

u =0 

N−1 ∑ 

v =0 

e −ν1 2 π( m v M + nu 
N ) F m 

i (u, v ) (9)

where F m 

i 
is the modified Fourier representation by setting the

magnitude value as 1 according to Eq. (8) . By performing the

inverse QFT and composing all the f m 

i 
images: 

I S = f m 

1 + f m 

2 μ2 (10)

The quaternion image I S is constructed. We further employ a filter

to smooth I S by: 

SM = g∗ ‖ I S ‖ 

2 (11)

where g is the smoothing filter. I S is the quaternion image con-

structed by inverse QFT. ‖ I S ‖ 2 is the constructed image in the

image domain from the saliency model. In this paper, the Gaussian

filter is employed to smooth the image for simplicity. 

4. Quaternion representation based stereoscopic image visual 

saliency (QRSIVS) for stereo image quality assessment 

For traditional 2D IQA metrics, the saliency maps have been

widely applied for guiding the spatial pooling stage to improve the
erformance. Based on the previous discussion, stereoscopic im-

ge visual saliency map can indicate the relative importance of

ixels in the spatial domain for left/right views. Therefore, it is

atural to incorporate the constructed QRSIVS into the designing

f SIQA metrics. Fig. 3 presents the framework of proposed QR-

IVS weighted SIQA model. For each stereoscopic image pair, the

aliency maps SM l and SM r for left and right views are extracted by

q. (11) , respectively. The traditional spatial domain based 2D IQA

etrics can be employed to generate the error maps EM l and EM r 

or the left and right view image, respectively. Finally, the saliency

aps are employed to pool the error maps as the image quality

core Q s of distorted stereoscopic image pairs. The general mathe-

atic form of proposed QRSIVS weighted SIQA index is given by: 

 s = 

∑ 

i ∈{ l,r} 
c i 

∑ 

x ∈ �i 
SM i (x ) · EM i (x ) 

∑ 

x ∈ �i 
SM i (x ) 

, (12)

here c l and c r are the weighting factors of the left and right

iews, respectively. �l and �r are the spatial domains of the left

nd right views, respectively. 

. Experimental results 

In this section, we implement the proposed SIQA metric and

ake performance comparisons with the state-of-the-art methods.

o validate the robustness of proposed metric, it is necessary to

valuate the SIQA metrics on different 3D image quality databases

IQDs). Currently, there are two categories for existing 3D IQDs.

ne is symmetric IQD where the left/right views of the stereo-

copic image are symmetric distorted. The other category is the

symmetric IQD where the left/right views of the stereoscopic

mage are degraded with different distortion types and levels.

n this paper, we evaluate the effectiveness of the SIQA metrics

n two typical symmetric IQDs as well as its generality on one

symmetric IQD. The detailed information of the selected IQDs is

escribed as follows: 

• LIVE 3D IQD Phase I (LIVE-Phase-I) [41] consists of 20 out-

door stereoscopic scenes. Each scene contains one stereoscopic

pairs (left/right view) and the corresponding range maps of the

views. All the reference stereoscopic images are with resolution

640 × 360. For each reference stereoscopic image, its left/right

views are symmetrically degraded by five different distortion

types with different degradation levels. The distortion types in-

clude JPEG compression (denoted as JPEG), JPEG20 0 0 compres-

sion (denoted as JP2K), white noise contamination (denoted as

WN), Gaussian blur (denoted as GBLUR), and fast fading chan-

nel distortion of JPEG20 0 0 compressed bitstream (denoted as

FF). The database contains 365 subject-rated stereoscopic im-

age pairs (80 each for JP2K, JPEG, WN and FF; 45 for GBLUR). 
• Ningbo University IQD Phase II (Ningbo-Phase-II) [42] aims

to build a diverse database that consists of a wide variety of

scenes and distortions. The database contains 12 outdoor and

indoor stereoscopic scenes. The resolutions are from 480 × 270

to 1280 × 960. The distortion types include JPEG, JP2K, WN,

GBLUR and H.264 compressed bitstream (denoted as H264).

The database consists of 312 subject-rated stereoscopic image

pairs (60 each for JP2K, JPEG, WN and GBLUR; 72 for H264). 
• LIVE 3D IQD Phase II (LIVE-Phase-II) [35] consists of both

symmetrically and asymmetrically distorted stereoscopic pairs.

Same as LIVE-Phase-I, the introduced distortion types include

JPEG, JP2K, WN, GBLUR and FF. The database consists of 360

subject-rated stereoscopic images (72 each for JP2K, JPEG, WN,

GBLUR and FF). 

For fair comparisons, both the 2D IQA extension models and

inocular vision inspired metrics (denoted as 3D IQA model)
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Fig. 3. The framework of proposed QRSIVS weighted SIQA model for the stereoscopic image pair. 
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re evaluated in the experiment. Two 3D IQA models, including

I-PSNR [43] and MJ3DQA [35] are compared in the experiment.

o verify the effectiveness of the proposed QRSIVS model, three

ifferent IQA metrics, including SSIM, multi-scale SSIM (MS-SSIM)

44] , and edge-strength-similarity (ESSIM) [45] are employed as

he basic IQA metrics. For MS-SSIM, the extracted visual saliency

ap is processed with the same filters in the MS-SSIM. Besides,

o demonstrate the effectiveness of proposed QRSIVS index, three

tate-of-the-art methods, including spectral residual (SR) approach

17] , saliency detection (SD) approach [11] , and 3D saliency detec-

ion (3DSD) [12] are also implemented and compared. As shown

n Tables 1 and 2 , 15 metrics in total (12 saliency map weighted

IQA metrics) are tested and compared. 

To remove the nonlinearity introduced by the subjective rating

rocess and further facilitate the empirical comparison of different

QA metrics, the nonlinear least-squares regression function nlinfit 

f Matlab is employed to map the objective quality score Q s to the

redicted subjective quality score DMOS P . The mapping function is

he five parameters logistic function defined as: 

MOS p = 

p 1 
2 

− p 1 
1 + exp(p 2 · (Q s − p 3 )) 

+ p 4 · q + p 5 , (13) 

here p 1 , p 2 , p 3 , p 4 and p 5 are the parameters of the logistic

unction. Three criteria are employed to evaluate the correspond-

ng performance: (1) correlation coefficient (CC): accuracy of

bjective metrics; (2) Spearman’s rank order correlation coefficient

SROCC): monotonicity of objective metrics; and (3) root mean-

quared-error (RMSE). Detailed experimental results are provided

n Tables 1 and 2 . For each group of saliency map weighted SIQA

etrics, the metric with the best performance is highlighted in

old. Also we provided the scatter plots of subjective DMOS values

gainst the predicted DMOS p values of the SIQA metrics on the 3D

QDs in Figs. 4–6 . 
.1. Comparison with the stereoscopic image quality metrics 

The stereoscopic image present different visual experiences for

he human viewers, where the depth perception is most impor-

ant. Therefore, there are a thread of work on SIQA by considering

he depth information, such as MJ3DQA [35] and FI-PSNR [43] . In

J3DQA [35] , the authors proposed to construct an intermediate

mage which when viewed stereoscopically is designed to have

 perceived quality close to that of the cyclopean image. They

ypothesized that performing stereoscopic QA on the intermediate

mage yields higher correlations with human subjective judgments.

n FI-PSNR [43] , besides the traditional 2D image metrics, the HVS

ehaviors on 3D content perception, specifically the binocular

ntegration behaviors-the binocular combination and the binocular

requency integration, are utilized as the bases for measuring the

uality of stereoscopic 3D images. 

Compared with MJ3DQA and FI-PSNR, in most cases, the pro-

osed saliency map based SIQA framework can achieve better

erformances on both LIVE-Phase-I and Ningbo-Phase-II. The

eason can be attributed to that the mechanism of binocular

ummation is still an open issue. Thus the computation model

f the rivalry property may not be accurate enough for assessing

he perceptual quality of 3D images. That is also the main rea-

on why the performances of existing binocular vision inspired

etrics are limited. In contrary, the saliency map as the most

traightforward and effective HVS property has been extensively

esearched and studied. Thus the saliency map weighted approach

s demonstrated to be an effective and simple way to improve the

erformance of quality prediction. 

.2. Comparison with other visual saliency models 

In this section, we compare the performances of different

isual saliency models on SIQA, specifically the SR approach

17] , SD approach [11] , and 3DSD [12] approach. SR analyzed the

og-spectrum of an input image, where the spectral residual of an
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Fig. 4. Scatter plots of subjective DMOS vs. predicted DMOS p of SIQA metrics on the LIVE-Phase-I database. 

Fig. 5. Scatter plots of subjective DMOS vs. predicted DMOS p of SIQA metrics on the LIVE-Phase-II database. 
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Table 1 

Performance of the SIQA metrics on LIVE-Phase-I database in terms of CC, SROCC, and RMSE. 

Criterion Metric JP2K JPEG WN GBLUR FF ALL 

CC PSNR 0.7879 0.1191 0.9352 0.7701 0.6948 0.8384 

FI-PSNR 0.8575 0.3266 0.9289 0.8191 0.7096 0.8733 

MJ3DQA 0.9285 0.6575 0.9580 0.9413 0.7489 0.9212 

SSIM 0.8752 0.4883 0.9437 0.9192 0.7243 0.8770 

+ SR 0.9015 0.5221 0.9468 0.9395 0.8002 0.9093 

+ SD 0.8825 0.4940 0.9416 0.9289 0.7487 0.8893 

+ 3DSD 0.8787 0.4823 0.9398 0.9306 0.7457 0.8882 

+ QRSIVS 0.9039 0.5356 0.9478 0.9442 0.8004 0.9180 

MS-SSIM 0.9335 0.6663 0.9522 0.9449 0.8083 0.9297 

+ SR 0.9328 0.6613 0.9459 0.9502 0.8280 0.9362 

+ SD 0.9321 0.6866 0.9451 0.9474 0.8167 0.9315 

+ 3DSD 0.9287 0.6416 0.9412 0.9481 0.8186 0.9301 

+ QRSIVS 0.9346 0.6741 0.9448 0.9512 0.8335 0.9373 

ESSIM 0.9011 0.6713 0.9526 0.9313 0.7468 0.9145 

+ SR 0.8905 0.6239 0.9525 0.9448 0.7579 0.9201 

+ SD 0.9040 0.6565 0.9511 0.9374 0.7566 0.9176 

+ 3DSD 0.9024 0.6647 0.9476 0.9379 0.7573 0.9165 

+ QRSIVS 0.9087 0.6171 0.9488 0.9509 0.7781 0.9240 

SROCC PSNR 0.7993 0.1212 0.9316 0.9020 0.5873 0.8365 

FI-PSNR 0.8522 0.2568 0.9297 0.9394 0.6599 0.8644 

MJ3DQA 0.8938 0.5612 0.9502 0.9223 0.6685 0.9134 

SSIM 0.8581 0.4347 0.9387 0.8793 0.5871 0.8767 

+ SR 0.8752 0.4658 0.9381 0.9126 0.6787 0.9045 

+ SD 0.8609 0.4568 0.9345 0.8984 0.6195 0.8880 

+ 3DSD 0.8586 0.4420 0.9330 0.9062 0.6151 0.8873 

+ QRSIVS 0.8776 0.4893 0.9406 0.9236 0.7178 0.9120 

MS-SSIM 0.8978 0.5985 0.9423 0.9282 0.7349 0.9225 

+ SR 0.8971 0.5731 0.9423 0.9298 0.7687 0.9273 

+ SD 0.8958 0.5954 0.9403 0.9253 0.7559 0.9243 

+ 3DSD 0.8934 0.5680 0.9347 0.9292 0.7604 0.9233 

+ QRSIVS 0.8989 0.5855 0.9394 0.9335 0.7877 0.9287 

ESSIM 0.8752 0.5504 0.9498 0.9026 0.6310 0.9073 

+ SR 0.8726 0.4969 0.9471 0.9235 0.6572 0.9112 

+ SD 0.8754 0.54 4 4 0.9457 0.9163 0.6518 0.9102 

+ 3DSD 0.8737 0.5452 0.9440 0.9169 0.6512 0.9103 

+ QRSIVS 0.8810 0.5129 0.9441 0.9306 0.6864 0.9162 

RMSE PSNR 7.9752 6.5098 5.8916 9.2335 8.9365 8.9363 

FI-PSNR 6.6623 6.2512 6.1612 8.3026 8.7545 7.9886 

MJ3DQA 4.8090 4.9267 4.7713 4.8870 8.2336 6.3810 

SSIM 6.2643 5.7066 5.5008 5.7011 8.5670 7.8794 

+ SR 5.6060 5.5771 5.3523 4.9567 7.4516 6.8235 

+ SD 6.0907 5.6855 5.6002 5.3598 8.2376 7.4984 

+ 3DSD 6.1818 5.7282 5.6843 5.2964 8.2785 7.5325 

+ QRSIVS 5.5398 5.5221 5.3065 4.7692 7.4488 6.5041 

MS-SSIM 4.6426 4.8762 5.0822 4.7386 7.3159 6.0398 

+ SR 4.6689 4.9050 5.3964 4.5092 6.9674 5.7644 

+ SD 4.6900 4.7552 5.4342 4.6323 7.1697 5.9660 

+ 3DSD 4.8038 5.0159 5.6217 4.6006 7.1374 6.0210 

+ QRSIVS 4.6081 4.8302 5.4529 4.4676 6.8656 5.7156 

ESSIM 5.6166 4.8478 5.0677 5.2737 8.2631 6.6355 

+ SR 5.8935 5.1105 5.0691 4.7421 8.1055 6.4235 

+ SD 5.5369 4.9330 5.1413 5.0403 8.1244 6.5194 

+ 3DSD 5.5804 4.8856 5.3169 5.0196 8.1143 6.5592 

+ QRSIVS 5.4072 5.1456 5.2537 4.4806 7.8043 6.2721 
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mage in spectral domain is extracted to construct the correspond-

ng saliency map of the image. SD constructed the saliency map in

he compressed domain. The intensity, color, and texture features

f the image are extracted from discrete cosine transform (DCT)

oefficients in the JPEG bit-stream. The saliency value of each DCT

lock is obtained based on the Hausdorff distance calculation and

eature map fusion. Both the SR and SD approaches focused on the

aliency detection of 2D images. For 3D images, specifically the

tereoscopic image, the depth information needs to be considered

or the saliency detection. 3DSD extracted four types of features,

amely color, luminance, texture, and depth, from DCT coefficients

or feature contrast calculation. A Gaussian model of the spatial

istance between image patches is adopted for consideration of

ocal and global contrast calculation. Moreover, the center bias

actor and human visual acuity, the important characteristics of
he human visual system, are further employed to enhance the

aliency map for stereoscopic images. 

From Tables 1 and 2 , it can be observed that the SIQA based

n our proposed QRSIVS outperforms the other saliency map

ased approaches on both the LIVE-Phase-I and Ningbo-Phase-II

D IQDs. For example, for the saliency map weighed SSIM metrics,

he CC value of our proposed metric SSIM+QRSIVS on Ningbo-

hase-II is 0.8845, where the original metric SSIM is only 0.8094

nd the best competitor SSIM+SR is 0.8621. The reason that our

roposed QRSIVS outperforms SR and SD is that QRSIVS explicitly

onsiders the depth information of the stereoscopic image in

erms of the disparity map and difference image. SR and SD only

ocus on the 2D natural image, which only consider the image

ontent cues, such as luminance, contrast, color information, and

o on. However, for the stereoscopic image perception, the depth
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Table 2 

Performance of the SIQA metrics on Ningbo-Phase-II database in terms of CC, SROCC, and RMSE. 

Criterion Metric JP2K JPEG WN GBLUR H264 ALL 

CC PSNR 0.9598 0.6949 0.8311 0.9606 0.9079 0.8852 

FI-PSNR 0.9579 0.9468 0.9381 0.9148 0.9627 0.9037 

MJ3DQA 0.9561 0.9010 0.9090 0.9565 0.9298 0.9073 

SSIM 0.9015 0.8273 0.7566 0.9369 0.8524 0.8094 

+ SR 0.9408 0.8766 0.8681 0.9334 0.9063 0.8621 

+ SD 0.9218 0.8637 0.8218 0.9406 0.8823 0.8347 

+ 3DSD 0.9107 0.8606 0.7720 0.9394 0.8710 0.8248 

+ QRSIVS 0.9617 0.8814 0.8889 0.9417 0.9236 0.8845 

MS-SSIM 0.9687 0.9327 0.9495 0.9379 0.9516 0.9186 

+ SR 0.9800 0.9417 0.9604 0.9322 0.9697 0.9438 

+ SD 0.9761 0.9414 0.9538 0.9422 0.9606 0.9338 

+ 3DSD 0.9755 0.9385 0.9495 0.9373 0.9596 0.9305 

+ QRSIVS 0.9806 0.9319 0.9623 0.9451 0.9691 0.9473 

ESSIM 0.9121 0.8829 0.7435 0.9460 0.8519 0.8723 

+ SR 0.9363 0.9099 0.8533 0.9439 0.9067 0.9167 

+ SD 0.9225 0.9005 0.8168 0.9474 0.8776 0.8943 

+ 3DSD 0.9120 0.8932 0.7641 0.9417 0.8616 0.8824 

+ QRSIVS 0.9525 0.9091 0.8908 0.9521 0.9211 0.9247 

SROCC PSNR 0.9529 0.8496 0.8628 0.9499 0.9049 0.9032 

FI-PSNR 0.9501 0.9436 0.9483 0.8552 0.9558 0.8841 

MJ3DQA 0.9517 0.9214 0.9185 0.9274 0.8919 0.9031 

SSIM 0.9132 0.8494 0.8085 0.8808 0.8462 0.8413 

+ SR 0.9373 0.8897 0.8889 0.8732 0.9036 0.8853 

+ SD 0.9260 0.8861 0.8570 0.8913 0.8797 0.8631 

+ 3DSD 0.9168 0.8764 0.8236 0.8916 0.8785 0.8556 

+ QRSIVS 0.9579 0.8962 0.9051 0.8909 0.9136 0.9026 

MS-SSIM 0.9690 0.9365 0.9349 0.8879 0.9397 0.9214 

+ SR 0.9761 0.9437 0.9527 0.8774 0.9475 0.9370 

+ SD 0.9741 0.9442 0.9489 0.8955 0.9505 0.9320 

+ 3DSD 0.9763 0.9415 0.9483 0.8911 0.9487 0.9306 

+ QRSIVS 0.9754 0.9341 0.9510 0.8991 0.9523 0.9397 

ESSIM 0.9199 0.8967 0.7831 0.9174 0.8524 0.8847 

+ SR 0.9301 0.9201 0.8807 0.9041 0.9009 0.9195 

+ SD 0.9265 0.9125 0.8377 0.9135 0.8786 0.9028 

+ 3DSD 0.9172 0.9071 0.8087 0.9089 0.8730 0.8934 

+ QRSIVS 0.9484 0.9192 0.9073 0.9194 0.9139 0.9279 

RMSE PSNR 5.9207 10.2422 6.6656 4.3438 5.8820 7.9931 

FI-PSNR 6.0554 4.5850 4.1502 6.3105 3.7991 7.3548 

MJ3DQA 6.1783 6.1780 4.9965 4.5592 5.1652 7.2240 

SSIM 9.1283 8.0017 7.8368 5.4636 7.3380 10.0887 

+ SR 7.1487 6.8553 5.9491 5.6080 5.9298 8.7041 

+ SD 8.1777 7.1791 6.8291 5.3031 6.6057 9.4595 

+ 3DSD 8.7092 7.2530 7.6186 5.3584 6.8936 9.7139 

+ QRSIVS 5.7791 6.7274 5.4901 5.2578 5.3781 8.0135 

MS-SSIM 5.2326 5.1366 3.7596 5.4207 4.3126 6.7882 

+ SR 4.1935 4.7920 3.3404 5.6552 3.4299 5.6756 

+ SD 4.5811 4.8061 3.6008 5.2364 3.9022 6.1481 

+ 3DSD 4.6377 4.9182 3.7611 5.4 4 48 3.9482 6.2937 

+ QRSIVS 4.1346 5.1680 3.2613 5.1047 3.4619 5.5020 

ESSIM 8.6436 6.6875 8.0155 5.0634 7.3490 8.4017 

+ SR 7.4080 5.9089 6.2490 5.1595 5.9179 6.8663 

+ SD 8.1404 6.1941 6.9364 4.9996 6.7274 7.6872 

+ 3DSD 8.6526 6.4047 7.7316 5.2587 7.1226 8.0834 

+ QRSIVS 6.4209 5.9337 5.4466 4.7783 5.4644 6.5414 
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information is much more important, which needs to be taken

into consideration. The 3DSD model demonstrated high accuracy

on predicting the human eye fixation point of the stereoscopic

image. However, it is demonstrated that 3DSD cannot well boost

the performance on SIQA, compared with SR and SD. In contrary,

our proposed QRSIVS targets at the performance enhancement of

SIQA, which yields better performances than 3DSD even with the

depth information explicitly considered. Based on the observations

above, we can make a conclusion that our proposed 3DQRVS based

SIQA framework is powerful for predicting the 3D visual quality of

stereoscopic images. 

5.3. Performances on difference distortions 

By breaking down to each distortion type, we can observe that

the QRSIVS based quality metrics can mostly outperform other
ompetitor models. Specifically, on the LIVE-Phase-I database, the

ropose QRSIVS based quality metrics achieve the best perfor-

ance on the WN, GBLUR, and FF distortion types. On the Ningbo-

hase-II database, the QRSIVS based quality metrics achieve the

est performance on the JP2K, WN, and GBLUR distortion types.

owever, the proposed QRSIVS based SIQAs perform the worst on

he type of JPEG of the LIVE-Phase-I database, as shown in Table 1 .

his is due to that the distortions of JPEG images are less perceptu-

lly separated, and thus are more challenging to be assessed [36] . 

.4. Generality of the proposed QRSIVS 

In this section, we test the proposed QRSIVS based quality met-

ics on LIVE-Phase-II dataset to evaluate its generality on the asym-

etric distortions of the stereoscopic image. The results are illus-

rated in Table 3 . It can be observed that the saliency map based
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Table 3 

Performance of the SIQA metrics on LIVE-Phase-II database in terms of CC, SROCC, and RMSE. 

Criterion Metric WN JP2K JPEG GBLUR FF ALL 

CC PSNR 0.9174 0.6115 0.4650 0.7133 0.7636 0.6808 

FI-PSNR 0.9247 0.7752 0.6677 0.7384 0.7157 0.6450 

MJ3DQA 0.9641 0.8594 0.8322 0.9617 0.9179 0.9099 

SSIM 0.9311 0.7259 0.6662 0.8491 0.8685 0.8030 

+ SR 0.9401 0.7925 0.7290 0.9191 0.9085 0.8141 

+ SD 0.9386 0.7398 0.6674 0.8784 0.8874 0.8093 

+ 3DSD 0.9351 0.7509 0.6793 0.8603 0.8842 0.8059 

+ QRSIVS 0.9441 0.8077 0.7360 0.9376 0.9161 0.8110 

MS-SSIM 0.9510 0.8389 0.8324 0.7995 0.8740 0.7938 

+ SR 0.9656 0.8783 0.8574 0.8188 0.8837 0.7791 

+ SD 0.9604 0.8469 0.8231 0.8126 0.8778 0.7869 

+ 3DSD 0.9607 0.8571 0.8290 0.7994 0.8790 0.7863 

+ QRSIVS 0.9651 0.8822 0.8536 0.8254 0.8849 0.7741 

ESSIM 0.9539 0.7559 0.8296 0.7704 0.8397 0.7653 

+ SR 0.9556 0.7697 0.8138 0.7726 0.8604 0.7497 

+ SD 0.9549 0.7493 0.8263 0.7742 0.8464 0.7575 

+ 3DSD 0.9575 0.7575 0.8360 0.7634 0.8410 0.7569 

+ QRSIVS 0.9569 0.7895 0.8294 0.7837 0.8677 0.7445 

SROCC PSNR 0.9189 0.5966 0.4909 0.6902 0.7301 0.6651 

FI-PSNR 0.9148 0.7437 0.6681 0.7088 0.6945 0.6456 

MJ3DQA 0.9573 0.8527 0.8314 0.9031 0.8919 0.9051 

SSIM 0.9224 0.7041 0.6777 0.8379 0.8343 0.7919 

+ SR 0.9340 0.7755 0.7176 0.8726 0.8896 0.7994 

+ SD 0.9338 0.7178 0.6777 0.8558 0.8591 0.7965 

+ 3DSD 0.9293 0.7363 0.6856 0.8445 0.8534 0.7930 

+ QRSIVS 0.9390 0.7907 0.7222 0.8847 0.8939 0.7920 

MS-SSIM 0.9473 0.8172 0.8271 0.8010 0.8304 0.7719 

+ SR 0.9639 0.8682 0.8425 0.8323 0.8339 0.7411 

+ SD 0.9565 0.8265 0.8130 0.8301 0.8302 0.7596 

+ 3DSD 0.9594 0.8383 0.8105 0.8024 0.8327 0.7571 

+ QRSIVS 0.9654 0.8694 0.8378 0.8483 0.8350 0.7349 

ESSIM 0.9527 0.7248 0.8278 0.7411 0.8016 0.7466 

+ SR 0.9518 0.7536 0.8251 0.7593 0.8202 0.7246 

+ SD 0.9536 0.7269 0.8238 0.7476 0.8085 0.7355 

+ 3DSD 0.9532 0.7351 0.8373 0.7403 0.7997 0.7351 

+ QRSIVS 0.9533 0.7734 0.8259 0.7703 0.8307 0.7144 

RMSE PSNR 4.2641 8.3015 6.4895 9.7582 7.4294 8.2674 

FI-PSNR 4.0781 6.2014 5.4572 9.3891 8.0362 8.6255 

MJ3DQA 2.8450 5.0193 4.0640 3.8158 4.5659 4.6812 

SSIM 3.9078 6.7514 5.4694 7.3556 5.7038 6.7271 

+ SR 3.6516 5.9873 5.0179 5.4976 4.8082 6.5555 

+ SD 3.6973 6.6046 5.4588 6.6555 5.3054 6.6307 

+ 3DSD 3.7954 6.4830 5.3790 7.0971 5.3742 6.6829 

+ QRSIVS 3.5323 5.7875 4.9627 4.8456 4.6125 6.6032 

MS-SSIM 3.3132 5.3428 4.0621 8.3631 5.5908 6.8644 

+ SR 2.7867 4.6933 3.7723 7.9930 5.3863 7.0755 

+ SD 2.9853 5.2197 4.1629 8.1154 5.5121 6.9646 

+ 3DSD 2.9731 5.0562 4.0996 8.3659 5.4872 6.9745 

+ QRSIVS 2.8074 4.6231 3.8182 7.8601 5.3594 7.1452 

ESSIM 3.2167 6.4275 4.0931 8.8766 6.2484 7.2656 

+ SR 3.1575 6.2670 4.2596 8.8396 5.8648 7.4699 

+ SD 3.1803 6.5011 4.1296 8.8130 6.1287 7.3689 

+ 3DSD 3.0909 6.4090 4.0244 8.9932 6.2256 7.3762 

+ QRSIVS 3.1104 6.0247 4.0953 8.6479 5.7208 7.5356 
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uality metrics cannot perform very well on LIVE-Phase-II. As in-

roduced in Section 5.3 , the distortions of different distortion types

nd levels also present masking properties of the HVS. There-

ore, the asymmetric distortions of the stereoscopic image will

nevitably affect the quality perception of HVS. However, the pro-

osed QRSIVS as well as the related visual saliency map, such as

R, SD, and 3DSD, treat the left and right view image equally. That

s also the main reason why the saliency map based metrics do not

erform very well. Also, the FI-PSNR treats the left and right view

qually, which together with PSNR provides an even worse perfor-

ances, compared with other competitor quality metrics. However,

or MJ3DQA, an intermediate image is constructed to have a per-

eived quality close to that of the cyclopean image. Therefore,

he different behaviors of the left and right view images can
omewhat be captured, which thereby gives the best performances

n LIVE-Phase-II. In the future, we will also consider different

ehaviors of different view images. Also the different distortions

n each view image will be considered to be incorporated into the

esign of the saliency map, especially for the quality assessment. 

Furthermore, we merge the three IQDs together to further test

he generality of the proposed QRSIVS based quality metric. From

able 4 , it can be observed that the proposed QRSIVS based can

chieve the best performances on the merged dataset, compared

ith 3D quality metrics, such as FI-PSNR and MJ3DQA, and other

aliency map based quality metrics. In this case, our proposed

RSIVS are more generally effective to evaluate the stereoscopic

mages with different distortion types and levels. 
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Fig. 6. Scatter plots of subjective DMOS vs. predicted DMOS p of SIQA metrics on the Ningbo-Phase-II database. 

Table 4 

Performance of the SIQA metrics on the merged dataset in terms of CC, SROCC, and 

RMSE. 

Metric CC SROCC RMSE 

PSNR 0.556 0.5368 17.4764 

FI-PSNR 0.5439 0.5298 17.6439 

MJ3DQA 0.5639 0.5497 17.3646 

SSIM 0.5622 0.5371 17.3889 

+ SR 0.588 0.5662 17.0071 

+ SD 0.5691 0.5448 17.2891 

+ 3DSD 0.5611 0.5365 17.4053 

+ QRSIVS 0.5948 0.5749 16.9033 

MS-SSIM 0.6322 0.614 16.2912 

+ SR 0.6311 0.6149 16.3108 

+ SD 0.6296 0.6128 16.3362 

+ 3DSD 0.6247 0.6078 16.4196 

+ QRSIVS 0.6336 0.6166 16.2673 

ESSIM 0.5847 0.5689 17.0573 

+ SR 0.5896 0.5737 16.983 

+ SD 0.5859 0.5712 17.0396 

+ 3DSD 0.5811 0.5662 17.1126 

+ QRSIVS 0.5971 0.5815 16.8664 
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6. Conclusion 

Stereoscopic image visual saliency map is an effective tool to

improve the prediction performance of SIQA metrics. In this paper,

we propose a QR based stereoscopic image visual saliency map de-

tection model. The detected stereoscopic image visual saliency map

is further incorporated into the SIQA framework. Experimental

results show that our proposed QRSIVS based SIQA metric is pow-

erful for predicting the 3D visual quality of stereoscopic images. 
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