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Abstract—Video quality assessment plays a fundamental role in
video processing and communication applications. In this paper,
we study the use of motion information and temporal human
visual system (HVS) characteristics for objective video quality
assessment. In our previous work, two types of spatial distortions,
i.e., detail losses and additive impairments, are decoupled and
evaluated separately for spatial quality assessment. The detail
losses refer to the loss of useful visual information that will affect
the content visibility, and the additive impairments represent
the redundant visual information in the test image, such as the
blocking or ringing artifacts caused by data compression and so
on. In this paper, a novel full-reference video quality metric is
developed, which conceptually comprises the following processing
steps: 1) decoupling detail losses and additive impairments within
each frame for spatial distortion measure; 2) analyzing the video
motion and using the HVS characteristics to simulate the human
perception of the spatial distortions; and 3) taking into ac-
count cognitive human behaviors to integrate frame-level quality
scores into sequence-level quality score. Distinguished from most
studies in the literature, the proposed method comprehensively
investigates the use of motion information in the simulation of
HVS processing, e.g., to model the eye movement, to predict
the spatio-temporal HVS contrast sensitivity, to implement the
temporal masking effect, and so on. Furthermore, we also
prove the effectiveness of decoupling detail losses and additive
impairments for video quality assessment. The proposed method
is tested on two subjective quality video databases, LIVE and IVP,
and demonstrates the state-of-the-art performance in matching
subjective ratings.

Index Terms—Human visual system (HVS), spatial distortions
decoupling, video quality assessment.

I. Introduction

DEMANDS for various kinds of video services, such as
digital TV, IPTV, video on demand, video conference,

video surveillance, and so on, boom with the advances in video
processing and communication technologies. A typical video
service chain consists of sequential components, e.g., acquisi-
tion, enhancement, compression, transmission, transcoding, re-
construction, restoration, presentation, and so on, implemented
by software and hardware systems. Video quality assessment
(VQA) plays a central role in the life cycle of most of these
systems: from the system design, performance evaluation, to
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the in-service functionality monitoring. In system design, an
objective VQA algorithm can work online to bring benefits
including performance improvement and/or resource saving;
in performance evaluation, customer-oriented VQA can be
employed to compare performances of competing systems,
e.g., two different video coding schemes; for in-service quality
monitoring, VQA continuously evaluates the system outputs,
troubleshoots when system failure occurs, so as to guarantee
high quality video service delivery. Since the human visual
system (HVS) is the ultimate receiver of the video service,
subjective VQA (subjective viewing test) is considered to be
the most reliable way to evaluate visual quality. Its applica-
tions include assessing visual systems, benchmarking objective
VQA algorithms, and so on. However, subjective VQA is not
feasible for online manipulations, which makes it impractical
for system design and quality monitoring. Furthermore, in
order to ensure repeatable and statistically meaningful results,
subjective VQA should precisely follow the standards [2]–[4]
to set up the viewing environment, and should employ suffi-
cient subjects in the viewing tests to account for individual
differences. Satisfying these requirements makes subjective
VQA time-consuming and expensive. Therefore, an accurate
objective VQA algorithm, or namely video quality metric
(VQM), becomes of paramount importance to the development
of future video processing and communication applications.

The obstacle to an accurate VQM comes from numerous
aspects: 1) the input video signal contents are diverse (e.g.,
sports, animations, movies, news report) creating problems,
such as unpredictable visual attention, and so on; 2) visual
systems generate various spatial artifacts (e.g., blocking, ring-
ing, blurring, white noise) and/or temporal artifacts (e.g., jit-
ter/jerky motion), which may be compounded during the video
delivery; 3) the viewing conditions, such as the environment
lightness, the display type and calibration, the viewing dis-
tance, and so on influence the distortion visibility; 4) the HVS
is extremely complex and seems impossible to be completely
modeled in the near future; and 5) visual quality judgment
is viewer dependent, related to unpredictable factors such as
the viewer’s interests, expectation, quality experience, and so
on. Consequently, VQM is not expected to be unconditionally
as accurate and reliable as the subjective VQA. Instead, it is
typical for most VQMs to restrict their utilities to specific sets
of input contents, artifacts, and viewing conditions.

It is customary to classify VQM into three categories
according to the reference availability: full-reference (FR),
reduced-reference (RR), and no-reference (NR) metrics. In

1051-8215/$31.00 c© 2012 IEEE



LI et al.: FULL-REFERENCE VIDEO QUALITY ASSESSMENT 1101

FR metrics, the reference is fully available and is assumed
to have maximum quality. They can be applied in system
design and performance evaluation. For instance, in lossy
video coding, the coding tools (e.g., intra and interprediction,
transformation, quantization, de-blocking filter) and the
coding modes (e.g., various intra or intermodes) are chosen
according to their abilities to optimize rate and distortion, the
latter of which can be quantified by FR metrics due to the
availability of the reference. In watermarking, performances
of various schemes are evaluated based on three major
factors: robustness (to malicious attack), capacity (to embed
information), and distortion perceptibility, where the distortion
perceptibility can be measured by FR metrics. RR metrics
extract features from the reference video, transmit them to the
receiver side (by an ancillary channel [5] or by watermarking
[6]) to compare against the corresponding features extracted
from the distorted video. The design of RR metric mainly
targets at quality monitoring. These features should be
carefully selected to achieve both effectiveness and efficiency,
i.e., predicting quality with great accuracy and small overhead
for feature representation. NR metrics require no reference,
therefore are most broadly applicable. For many inherently
no-reference applications, such as video signal acquisition,
enhancement, and so on, NR metric is their only choice for
online quality assessment. Not surprisingly, NR metric design
is tough, facing challenges of limited input information.
Therefore, to guarantee acceptable prediction performance,
many NR metrics are designed to cope with specific artifacts,
such as blocking, blurring, ringing, jitter/jerky motion, and
so on, scarifying versatility for prediction accuracy. For a
comprehensive overview on NR metrics, please refer to [7].

In this paper, we propose a novel FR VQM. It promotes and
completes our preliminary work [40] by extensively exploring
the motion information and HVS temporal characteristics for
video quality assessment. For spatial distortion measurement,
we adopt the method [1] previously proposed by the authors
for image quality assessment, i.e., separately evaluating detail
losses and additive impairments which are decoupled from the
overall spatial distortions. In Section II-A, we briefly overview
FR image quality metrics (IQM) and explain in more detail
the adopted spatial distortion measurement. In the following
steps, we simulate the HVS processing, more specifically, how
the human beings perceive the spatial distortions, using several
major HVS characteristics, such as contrast sensitivity function
(CSF), visual masking, information pooling, and so on. Com-
pared with our preliminary work [40] in which motion infor-
mation of the video was not considered and with most previous
studies, the contribution of the proposed VQM comes from
the extensive use of motion information to simulate the HVS
processing, that is, motion vectors are derived in the wavelet
domain, and employed in the eye-movement model, the spatio-
velocity CSF, the motion-based temporal masking, and so on.
We also simulate cognitive human behavior, which originally
was proposed to be used in continuous quality evaluations
[37], [38], and have proved its effectiveness in sequence-level
quality prediction. In Section II-B, an introduction is given
on how the previous VQMs use motion information and HVS
characteristics for video quality assessment. The major differ-

ences between them and the proposed VQM are discussed
in more detail. Section III elaborates the proposed VQM.
Section IV shows the experimental results using both standard-
definition and high-definition video databases to illustrate the
performance of the proposed VQM in matching subjective
ratings. Section V provides the conclusion.

II. Background

A. Full-Reference Image Quality Assessment

Most FR IQMs are general-purpose, that is, being able to
handle various artifacts. As pointed out in [8], this cross-
artifact versatility is crucial for benchmarking image process-
ing systems. Pixel-based metrics, such as MSE/PSNR and so
on, correlate visual quality with pixel value differences. As
proved in many studies, MSE/PSNR predicts quality of white-
noise distorted images with excellent accuracy, but failed to
cope with other distortion types and cross-artifacts quality
measurement. HVS-model-based metrics, such as those in
[9]–[12], employ HVS models to simulate the low-level HVS
processing of the visual inputs. They are often criticized, e.g.,
in [13], because these HVS models may be unsuitable for
supra-threshold contrast measure and show a lack of geometric
meaning [14, Fig. 4]. High-level HVS processing mechanism
still cannot be fully understood. Therefore, many recent IQMs
simply make use of common knowledge or assumption about
the high-level HVS characteristics to guide quality prediction.
For example, it is well acknowledged that structural informa-
tion is critical for cognitive understanding; hence, the authors
of [14] made the assumption that the structure distortion is a
good representative of visual quality variation. They proposed
the structure similarity index (SSIM) which distinguishes
structure distortions from luminance and contrast distortions.
This assumption has been well recognized and applied in other
IQMs [8], [15], [16]. Another well-known assumption made
by the authors of the visual information fidelity criterion (VIF)
[17] is that the HVS correlates visual quality with the mutual
information between the reference and distorted images. The
mutual information resembles the amount of useful informa-
tion that can be extracted from the distorted image. Although
VIF seems to be quite different from SSIM in terms of the
fundamental assumption, down to the implementation, the two
IQMs share similarities, as analyzed in [18].

In this paper, we adopt our previous work [1] to measure
the spatial distortions. Instead of treating the spatial distortions
integrally, they are decomposed into detail losses and additive
impairments. As the name implies, detail losses refer to the
loss of useful information which affects the content visibility.
Additive impairments, on the other hand, refer to the redundant
visual information which does not belong to the original
image. Their appearance in the distorted image will distract
viewer’s attention from the useful picture contents, causing
unpleasant viewing experience. To assist understanding, an
illustration is given in Fig. 1. In Fig. 1(a), the distorted image
is separated into the original image and the error image.
Typically, HVS-model-based IQMs will try to simulate low-
level HVS responses to the error image, treating these errors in
a similar way. As shown in Fig. 1(b), the proposed method will
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Fig. 1. Example of (a) separating the distorted image into the original image
and the error image, (b) separating the error image into the detail loss image
and the additive impairment image, and (c) separating the distorted image into
the restored image and the additive impairment image.

further separate the image errors into detail losses and additive
impairments. For JPEG compressed images, as the one shown
in Fig. 1, the detail loss is caused by DCT coefficients
quantization, and the additive impairment mainly appears to be
blocky. In our implementation, we first separate the distorted
image into an additive impairment image and a restored image,
as shown in Fig. 1(c). The restored image exhibits the same
amount of detail losses as the distorted image but is additive
impairment free. And then, the detail loss can be obtained by
subtracting the restored image from the original one.

B. Exploiting Temporal Information for Video Quality
Assessment

In comparison to images, videos involve one more dimen-
sion which apparently will render quality prediction more
difficult. The predictive performance of the state-of-the-art
VQMs measured by correlation coefficient is around 0.8
typically [19], while on the other hand for the state-of-the-
art IQMs this value on most databases is above 0.9 [1]. To
make video quality prediction more precise, besides accurately

measuring the spatial distortions, motion information of the
video and temporal characteristics of the HVS should be fully
investigated.

A frequently used method of exploiting temporal HVS
characteristics is to decompose the video signal into multiple
spatio-temporal frequency channels and then assign different
weights to them according to, e.g., the CSF. It is believed
that the early stage of the visual pathway separates visual
information into two temporal channels: a low-pass channel
and a band-pass channel, known as the sustained and transient
channels, respectively. Several VQMs model this HVS mech-
anism by filtering the videos along the temporal dimension
using one1 or two filters. Recently, Seshadrinathan et al. [19]
proposed to use 3-D Gabor filters to decompose the video
locally into 105 spatio-temporal channels enabling the calcula-
tion of motion vectors from the Gabor outputs. Different from
the typical CSF weighting, in [19] each channel is weighted
according to the distance between its center frequency and a
spectral plane identified by the motion vectors of the reference
video. Lee et al. [20] proposed to find the optimal weights for
channels by optimizing the metric’s predictive performance on
subjective quality video databases.

Masking is another visual phenomenon critical for video
quality assessment. The visibility of distortions is highly de-
pendent on both the spatial and temporal activities. However,
most VQMs take into account only the spatial masking effect
[19], [21]–[24]. And although temporal masking is involved
in a few studies [25]–[27], motion vectors approximating the
eye tracking movement are rarely investigated. Lukas et al.
[25] used the derivative of the outputs of a spatial visual
model along the time axis to measure the local temporal
activities, which then serves as input to a nonlinear temporal
masking function. This function was calibrated by fitting
psychophysical data. Lindh et al. [26] extended a classical di-
visive normalization-based masking model [28] from spatial to
spatio-temporal frequency domain. Chou et al. [27] proposed
to measure temporal activity simply by calculating pixel differ-
ences between adjacent frames. They constructed a temporal
masking function via specifically designed psychophysical
experiment. Chen et al. [29] conducted experiments to refine
this function. Similar temporal masking functions were taken
by a host of video quality metrics and JND models [30]–[33].

High-level temporal characteristics of the HVS can be
used in the pooling process. Pooling models the information
integration which is believed to happen at the late stage of
the visual pathway, and usually it is carried out by summation
over all dimensions to obtain an overall quality score for an
image or video. Wang et al. [34] used relative and background
motions to quantify two terms: motion information content and
perceptual uncertainty, which in the next step were used as
weighting factors in the spatial pooling process. In TetraVQM
[35], a degradation duration map is generated for each frame
by analyzing the motion trajectory, and serves as a weighting
matrix in spatial pooling. Ninassi et al. [36] proposed to take
into account the temporal variation of spatial distortions in the
temporal pooling process. In [24], [37], and [38], the authors

1For computational simplicity, only the sustained channel is isolated.
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Fig. 2. Systematic framework of the proposed VQM.

considered the asymmetric human behavior in responding to
quality degradation and improvement.

In this paper, three HVS processing simulation modules,
i.e., the eye movement spatio-velocity CSF, the motion-based
temporal masking, and the asymmetric temporal pooling, are
deployed to extend our IQM [1] into the state-of-the-art VQM.
Daly’s eye movement spatio-velocity CSF [39] which models
HVS sensitivity as a function of the spatial frequency and the
velocity of the visual stimuli is used for the first time in video
quality prediction. Compared to the other CSF models, Daly’s
method gives us mainly two advantages: 1) a more accurate
CSF modeling; and 2) the involvement of the eye movement
which is common in natural viewing conditions. We also
propose a novel temporal masking method which differs from
the most existing ones in the use of the motion information.
The asymmetric temporal pooling method is directly adopted
from [24] with the parameters tuned on a training set.

III. Proposed Method

A. Framework

The framework of the proposed VQM is illustrated in
Fig. 2. It consists of several sequential processing modules. In
general, for each frame of the distorted video, the distortions
within are separated into additive impairments and detail
losses. Motion-based contrast sensitivity function and visual
masking are incorporated to rectify the intensities of the
impairment images so that the intensity values become better
representative of the low-level neural responses of the HVS.
The influences of additive impairments and detail losses to
visual quality are independently evaluated, and then combined
together by weighted summation to generate quality score for
each frame. An overall quality score indicating the quality
of the whole video sequence is derived by temporal pooling
over the individual quality scores of the video frames. Detailed
information on each processing module and the meaning of the
notations in Fig. 2 will be given below. It should be noted that
the proposed VQM works with luminance only. Color inputs
will be converted to gray scale before further processing.

B. Decoupling Additive Impairments and Useful Image
Contents

As introduced in Section II-A, in our VQM each distorted
video frame (dn, indexed by time n) is separated into an

additive impairment image and a restored image, which is
exemplified in Fig. 1(c). The decoupling algorithm which
performs in the critically sampled wavelet domain is adopted
from our previous work [1]. To reduce its computational
complexity, two modifications are applied: 1) the original db2
wavelet transform is replaced by the simpler Haar wavelet
transform; and 2) since it rarely happens in practical video
applications, contrast enhancement is not distinguished from
spatial distortions as in [1]. The derivation of the decoupling
algorithm used in this paper is given below.

In the following context, o, d, r, a are used to represent the
original, distorted, restored, and additive impairment images,
respectively. Our intention is to get the restored image r which
exhibits the same amount of detail losses as the distorted
image d but is additive impairment free. After calculating r,
the additive impairment image a can be obtained by a = d−r.
as shown in Fig. 1(c).

The restored image r consists of local image patches ri

where i indicates the local position. Each patch ri can be
further decomposed into multiple components of different
spatial frequencies

ri =
S∑

s=0

rs
i (1)

where s indicates the nominal spatial frequency. Such decom-
position which requires both time and frequency localization
of the signal can be implemented by wavelet transform.
Therefore, rs

i can be considered as the image component re-
constructed from the wavelet coefficients of subband s around
location i. The decomposition is applied to the original image
o and the distorted image d to derive os

i and ds
i , respectively. To

make rs
i additive impairment free, the gradient of rs

i should be
proportional to that of os

i , i.e., ∇rs
i = ks

i ×∇os
i , where the value

of ks
i is limited to [0,1] to account for the detail losses. For high

frequency subbands (s ∈ {1, 2, ..., S}), the mean values of rs
i

and os
i are equal to zero. Therefore, to satisfy the requirements

on ∇rs
i , we impose that rs

i = ks
i × os

i .
Another objective of the decoupling is to make rs

i exhibit
the same amount of detail losses as ds

i . The distorted image
patch ds

i can be taken as the composite of two signals,
i.e., the useful image content and the additive impairments.
Since the additive impairments correlate poorly with rs

i , as
exemplified by Fig. 1(b), the similarity between rs

i and ds
i

is approximately equivalent to the similarity between rs
i and

the useful image content of ds
i . Therefore, making rs

i exhibit
the same amount of detail losses as ds

i (i.e., maximizing the
similarity between rs

i and the useful image content of ds
i )

can be achieved equivalently by maximizing the similarity
between rs

i and ds
i . For computational simplicity, the image

similarity is measured by the sum of squared differences:
minks

i
∈[0,1]||rs

i − ds
i ||2. Given an orthonormal discrete wavelet

transform (DWT), the following equations hold:

minks
i
∈[0,1] ||rs

i − ds
i ||2

= minks
i
∈[0,1] ||DWT [rs

i − ds
i ]||2

= minks
i
∈[0,1] ||DWT [ks

i × os
i − ds

i ]||2
= minks

i
∈[0,1] ||ks

i × DWT [os
i ] − DWT [ds

i ]||2
= minks

i
∈[0,1] ||ks

i × Os
i − Ds

i ||2
(2)
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Fig. 3. Subband indexing. Each subband is indexed by a level and an
orientation {λ, θ}. θ = 2, 3, and 4 denote the vertical, diagonal, and horizontal
subbands, respectively.

where Os
i and Ds

i denote the DWT coefficients of os
i and ds

i ,
respectively. The closed-form solution of the scale factor ks

i in
(2) can be given by

ks
i = clip

(
< Os

i · Ds
i >

||Os
i ||2

, 0, 1

)
(3)

where < · > denotes the inner product operation, and
clip(x, 0, 1) is equivalent to min(max(0, x), 1). According to
the size of the local image patch, Os

i and Ds
i can be a

vector of DWT coefficients or just a single DWT coefficient.
We found experimentally that the patch size is inessential
to the decoupling performance. Therefore, for computational
simplicity we use a single DWT coefficient to represent Os

i

and Ds
i . In this way, (3) is simplified to be the division of two

scalar values.
In the following discussion, n is used to index each frame,

{λ, θ} is used to index each wavelet subband, as illustrated
in Fig. 3, and {i, j} is used to index the DWT coefficient
position. A four-level Haar DWT is applied to the original (on)
and distorted (dn) frames, generating the DWT coefficients
On(λ, θ, i, j) and Dn(λ, θ, i, j), respectively. Based on the
above analysis, scale factors of the high frequency subbands
can be given by

kn(λ, θ, i, j) = clip

(
Dn(λ, θ, i, j)

On(λ, θ, i, j) + 10−30
, 0, 1

)
(4)

where the constant 10−30 is to avoid dividing by zero. Since
intuitively the original mean luminance cannot be recovered
from the distorted frame, the approximation subband of the
restored image is made to equal that of the distorted one. Even-
tually, the DWT coefficients of the restored image Rn(λ, θ, i, j)
can be obtained by

Rn(λ, θ, i, j) =

{
Dn(λ, θ, i, j), θ = 1
kn(λ, θ, i, j) × On(λ, θ, i, j), otherwise

(5)
where θ = 1 indicates the approximation subband. Since DWT
is linear and a = d − r, DWT coefficients of the additive
impairment image can be calculated by

An(λ, θ, i, j) = Dn(λ, θ, i, j) − Rn(λ, θ, i, j). (6)

C. Motion Estimation

Motion estimation (ME) algorithms aim at finding motion
vectors representing object trajectory. In video compression,

motion vectors can be used to remove the interframe re-
dundancy. In video quality assessment, as will be elaborated
below, the motion of the visual stimuli affects the HVS sensi-
tivity. The use of motion vectors can enhance the modeling
accuracy of how the HVS perceives distortions. As shown
in Fig. 2, the ME is performed in the wavelet domain of
the original video sequence. Wavelet transform decomposes a
video frame into subbands of different resolutions. The motion
vectors of these multiresolution subbands are highly corre-
lated since they actually specify the same motion structure
at different scales. Therefore, Zhang et al. [41] proposed a
wavelet domain multiresolution ME scheme, where motion
vectors at higher resolution are predicted by the motion vectors
at the lower resolution and are refined at each step. The
proposed method not only considerably reduces the searching
time, but also provides a meaningful characterization of the
intrinsic motion structure. We directly adopt Zhang’s scheme
to perform the wavelet domain ME. Specifically, the motion
vectors Vλ,θ for the coarsest subbands (λ = 4, θ = 1, 2, 3, 4)
are estimated by block-based integer-pixel full search with
a search range of [−3, +3]. These motion vectors are then
scaled by Vλ,θ = 2(4−λ) × V4,θ (λ = 1, 2, 3, θ = 2, 3, 4), and
used as initial estimates for the finer subbands. These initial
motion vectors are further refined by using full search with
a relatively small search range [−2, +2]. The block size is
adapted to the scale, i.e., 2(5−λ) × 2(5−λ) (λ = 1, 2, 3, 4), so
that no interpolation is needed as the motion vectors propagate
through scales. The motion vectors will be used in the contrast
sensitivity function. The motion estimation errors, En, are also
saved for use in the temporal masking. It is worth noting that
the critically sampled wavelet domain ME is not as accurate as
the spatial domain ME due to the shift-variant property caused
by the decimation process of the wavelet transform. As will
be discussed below, we try to partially compensate the ME
imprecision in the temporal masking process. More advanced
wavelet domain ME algorithms can be used, but we found
Zhang’s scheme a good compromise between performance and
simplicity.

D. Contrast Sensitivity Function

Human contrast sensitivity is the reciprocal of the contrast
threshold, i.e., the minimum contrast value for an observer
to detect a stimulus. It is related to the properties of the
visual stimulus, notably its spatial and temporal frequen-
cies. A spatio-temporal CSF is a measure of the contrast
sensitivity against spatial and temporal frequencies of the
visual stimulus. In the proposed method, we adopt Daly’s
eye movement spatio-velocity CSF model [39], as shown
in Fig. 4, which was extended from Kelly’s spatio-temporal
CSF model [42] by taking into account the natural drift,
smooth pursuit, and saccadic eye movements. In natural view-
ing conditions, evaluating visual quality must involve eye
movements. Hence, incorporating eye movement model in
the VQM should help to boost its predictive performance.
Furthermore, rather than using flickering waves, such as in [23]
and [43], the derivation of Daly’s model is based on traveling
waves which better represent the natural viewing conditions
[39], [44].
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Fig. 4. Daly’s eye movement spatio-velocity CSF model.

Daly’s model can be formulated as

CSF (ρ, vR) = k · c0 · c1 · c2 · vR · (c12πρ)2exp(− c14πρ

ρmax
)

k = s1 + s2 · |log(c2vR/3))|3
ρmax = p1/(c2vR + 2)

(7)

where ρ is the spatial frequency of the visual stimulus in
cy/deg and vR is the retinal velocity in deg/s. The values of
the constants are consistent with that of [39], i.e., c0 = 1.14,
c1 = 0.67, c2 = 1.92, s1 = 6.1, s2 = 7.3, p1 = 45.9. Since they
are not quite related to our subject, please refer to [39] for
the physical meanings of these constants. The nominal spatial
frequency of subbands in scale λ can be given by

ρ(λ) =
π · fs · d

180 · h · 2λ
(8)

where d is the viewing distance, h is the picture height, and
fs is the cycles per picture height. The retinal velocity vR can
be calculated as follows:

vR = vI − vE (9)

where vI is the image plane velocity, and vE is the eye
velocity. There are three types of eye movements modeled,
i.e., the natural drift eye movements (0.8–0.15°/s) which
are responsible for the perception of static imagery during
fixation, the saccadic eye movements (160–300°/s) which are
responsible for rapidly moving the fixation point from one
location to another, and the smooth pursuit eye movements
which lies between the two endpoints and occur when the eye
is tracking a moving object. Adopted from [39], the equation
used to model the eye velocity vE as a function of the image
plane velocity vI is

vE = min�(gsp · vI) + vMIN, vMAX� (10)

where gsp is the gain of the smooth pursuit eye movements
modeling the eye tracking lag, vMIN is the minimum eye
velocity due to drift, and vMAX is the maximum eye velocity
before transmitting to saccadic movements. As in [39], we set

gsp = 0.82, vMIN = 0.15, vMAX = 80. Given the magnitude,
v, of the motion vector and the frame rate, fr, in frames per
second (f/s), the image plane velocity can be calculated as

vI =
180 · h · 2λ · v · fr

π · d · fs

(11)

where the meaning of the notations is the same as (8). Using
(7)–(11) and the motion vectors derived from the wavelet
domain ME, for each wavelet coefficient a CSF value can
be calculated. As illustrated in Fig. 2, we simulate the CSF
processing in the wavelet domain of the original image, the
two decoupled images, and the ME prediction error image. It
is implemented by multiplying each wavelet coefficient with
its corresponding CSF value. The resultant signals are denoted
as Ocsf

n , Rcsf
n , Acsf

n , Ecsf
n , respectively.

E. Spatial and Temporal Masking

Spatial masking refers to the visibility threshold elevation of
a target signal caused by the presence of a superposed masker
signal. Traditional spatial masking methods use original image
to mask the distortions. However, artifacts may make the dis-
torted image less textured compared to the original, especially
for low-quality images where the contrasts of the textures
and edges have been significantly reduced. In our method,
the restored image and the additive impairment image are
decoupled, as illustrated in Fig. 1(c). Since the two decoupled
images are superposed to form the distorted image, one’s
presence will affect the visibility of the other. Therefore, in the
proposed metric both images serve as the masker to modulate
the intensity of the other. As in [1], the equation used to
calculate the spatial masking thresholds is

Tλ = ms ×
3∑

θ=1

(|Mλ,θ| ⊗ w) (12)

where w is a 3 × 3 weighting matrix with the central element
being 1/15 and all the other elements being 1/30, |Mλ,θ| is the
absolute value of the {λ, θ} wavelet subband of the masker
signal, ⊗ denotes convolution, and Tλ is the threshold map
for the three wavelet subbands in scale λ. The ms determines
the slope of the masking function. As in [1], we set ms = 1
for all scales. We take the absolute value of the CSF-weighted
wavelet coefficients of the maskee signal, i.e., |Rcsf

n | (|Acsf
n |),

subtract from them the spatial masking thresholds given by
(12) with Acsf

n (Rcsf
n ) as the masker signal, and clip the

resultant negative values to 0. After the spatial masking, the
wavelet coefficients of the restored and additive impairment
images are represented by Rsm

n and Asm
n , respectively. As

shown in Fig. 2, Ssm
n which denotes detail losses is derived

by subtracting Rsm
n from Ocsf

n , i.e., the CSF-weighted wavelet
coefficients of the nth original frame.

As aforementioned in Section II, temporal masking is often
modeled as a function of temporal discontinuity, that is, the
higher the interframe differences, the stronger the temporal
masking effect. To the best of our knowledge, temporal
masking methods in the literature, such as the ones used in [27]
and [30]–[33], measure interframe differences of the original
video sequence (on − on−1) as the masker to mask distortions,
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and notably they do not consider the eye movement. As
discussed above, the human eyes may track the motion. Hence,
the use of interframe differences without taking into account
motion vectors may exaggerate the temporal masking effect.
In our implementation, the CSF-weighted ME prediction error
image, Ecsf

n , is used to calculate the temporal masker. In case
of inaccurate motion vectors as discussed in Section III-C,
the temporal masker is given by min(Ecsf

n , (Ocsf
n − O

csf
n−1)),

which means that each element of the temporal masker equals
the smaller one of the prediction error and the interframe
difference. Equation (12) with the spatial masking factor ms

replaced by the temporal masking factor mt is used to calculate
the temporal masking thresholds. We set mt = 0.4 by tuning
the predictive performance of the VQM on a training set, as to
be explained in Section IV. The masking process also follows
the aforementioned three steps: taking absolute value of the
maskee, subtracting masking thresholds, and then clipping
negative values to zero. The temporal masker is used to
modulate the intensities of the two types of spatial distortions:
the detail losses (Ssm

n ) and the additive impairments (Asm
n ). The

resultant signals are denoted as Stm
n and Atm

n , respectively.

F. Two Quality Measures and Their Combination

As in [40], the additive impairment measure (AIM) and the
detail loss measure (DLM) are given by

f AIM
n =

∑
λ

∑
θ[

∑
i,j∈center Atm

n (λ, θ, i, j)2]1/2

Np

θ �= 1 (13)

f DLM
n =

∑
λ

∑
θ[

∑
i,j∈center Stm

n (λ, θ, i, j)2]1/2∑
λ

∑
θ[

∑
i,j∈center O

csf
n (λ, θ, i, j)2]1/2

θ �= 1 (14)

where θ �= 1 means that we exclude the use of approximation
subband in the spatial pooling, and (i, j) ∈ center indicates
that only the central region of each subband is used, which
serves as a simple region of interest model. Since additive im-
pairments are relatively independent of the original content, we
assume that visual quality with respect to additive impairments
can be predicted by analyzing their intensities without consid-
ering the original content. On the other hand, visual quality
with respect to detail losses is supposed to be connected with
the percentage of visual information loss. Therefore, in AIM
and DLM the integrated distortion intensities are normalized
by the pixel number Np and an integrated value associated
with the original content,2 respectively.

To derive the frame-level quality score, f AIM
n and f DLM

n are
combined by weighted summation3

fn = fAIM
n + w · fDLM

n . (15)

The weighting factor w is set to 2.47 × 103 by performance
tuning, as to be explained in Section IV.

2To make complexity affordable, DLM only provides an approximate
calculation of the visual information loss.

3The typical value ranges of f ALM
n and f DLM

n are from 0 to 600 and from
0 to 0.3, respectively.

G. Temporal Pooling

In temporal pooling, quality scores fn, n ∈ {1, ..., N}, of the
video frames are integrated to yield the overall quality score
of the whole video sequence. Rather than directly calculating
their average, preprocessing on the frame-level scores is per-
formed to generate intermediate results f ′

n, n ∈ {1, ..., N}. The
preprocessing simulates several cognitive human behaviors
that have been reflected in the results of many continuous qual-
ity evaluations [37], [38], like the smoothing effect, i.e., the
subjective ratings typically demonstrate far less variation than
the objective quality scores, and the asymmetric tracking, i.e.,
the human observers are more sensitive to degradation than
to improvement in picture quality. We adopt the implemen-
tation in [24] which is a lowpass function of the frame-level
scores

f
′
n =

{
f

′
n−1 + a−	n, if 	n ≤ 0

f
′
n−1 + a+	n, if 	n > 0

(16)

where 	n = fn − f
′
n−1. The value difference between a− and

a+ embodies the asymmetric tracking human behavior. In [24],
the values of a− and a+ are derived by training (a− = 0.04 and
a+ = 0.5). We re-tune the two parameters on our training set,
and get similar results: a− = 0.075, a+ = 0.431. This parameter
setting is used in our VQM. Finally, the overall sequence-level
quality score s is given by averaging the intermediate results
f ′

n, n ∈ {1, ..., N}

s =
1

N

N∑
n=1

f
′
n. (17)

IV. Experiments

A. Subjective Quality Video Databases and Performance
Evaluation Criteria

In this section, two subjective video databases are used
for performance evaluation, i.e., the LIVE and IVP subjective
quality video databases. A subjective quality video database
provides each of its distorted video a subjective score, which
was obtained through subjective viewing tests. To evaluate
predictive performance of a VQM, these subjective scores
can be used as the ground truths to be compared against the
metric’s outputs. LIVE video database [45]–[47] consists of
150 768×432p distorted videos generated from ten reference
videos of natural scenes with frame rates of either 25 or
50 f/s. Four practical distortion types for standard-definition
videos are involved: H.264 compression, MPEG-2 compres-
sion, transmission errors over IP networks, and transmission
errors over wireless networks. IVP video database [48] is
developed by the author and his associates. It consists of
128 1920 × 1088p distorted videos with frame rate of 25 f/s.
The reference videos contain both natural scenes and anima-
tions. Four practical distortions for high-definition videos are
involved: H.264 compression, MPEG-2 compression, Dirac
wavelet compression [49], and transmission errors over IP
networks. Both databases pack their videos into YUV 4:2:0,
and the duration of each distorted video sequence is around
10 s. The reference and distorted videos are well spatially
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and temporally registered, and there is no need for luminance-
chrominance alignment [50].

As required by some performance measures, such as the
linear correlation coefficient, it is necessary to nonlinearly
map each metric output (objective score) x to Q(x), so
that Q(x) and the subjective scores approximately exhibit a
linear relationship. We adopt the following nonlinear mapping
function [17] for all VQMs in the experiments:

Q(x) = β1 ×
(

0.5 − 1

1 + exp(β2 × (x − β3))

)
+ β4 × x + β5.

(18)
The fitting parameters {β1, β2, β3, β4, β5} are determined by
minimizing the sum of squared differences between the
mapped objective scores Q(x) and the subjective scores. As to
be introduced below, we divide the LIVE video database into
a training set and a test set. In the following experiments, the
fitting parameters are determined on the training set and are
used to evaluate the predictive performances of the VQMs on
the test set. As for the IVP video database, due to the limited
number of test sequences, we do not divide it into a training
set for determining the fitting parameters and a test set for
the evaluation. On the other hand, the fitting parameters are
chosen and tested on the entire IVP database.

The mapped scores Q(x) and the subjective scores serve as
inputs to three performance measures: the linear correlation
coefficient (LCC), the root mean squared error (RMSE), the
Spearman rank-order correlation coefficients (SROCC). For
formulation and detailed comparison between these perfor-
mance measures, please refer to [1] and [51]. In general, higher
LCC indicates stronger correlation between objective and
subjective scores, hence, better predictive performance; RMSE
measures the predictive errors, so the smaller the RMSE the
better the predictive performance. SROCC measures corre-
lation between ranks of the objective and subjective scores,
instead of their magnitudes as the LCC does. Therefore, it is
immune to a failed monotonous nonlinear mapping.

B. Parameterization

There are four parameters to be determined, i.e., mt , w,
a−, and a+. We select 60 videos4 from LIVE video database
to train these parameters. The objective is to maximize the
SROCC of the resultant VQM on this training set. In the
training process, mt is changed from 0 to 0.9 in step of 0.1.
For each mt , the best w is found by a global optimization algo-
rithm, i.e., the genetic algorithm [52], with a− = 1 and a+ = 1
(i.e., f

′
n =fn). Comparing all the {mt , w} pairs, {mt = 0.4,

w = 2.47 × 103} that maximizes the SROCC is chosen as the
final parameters setting. Fig. 5 shows the mt training results.
When mt = 0.4, SROCC reaches the peak. Further increase of
mt will degrade the predictive performance, since the temporal
masking effect may be overestimated. After mt and w are
fixed, a− and a+ are found also by the genetic algorithm.
Table I shows how the processing modules introduced in
Section III accumulatively improve the predictive performance

4The 60 distorted videos are generated from four reference sequences, i.e.,
Tractor, Sunflower, Mobile and Calendar, Park Run, randomly chosen from
the LIVE video database.

Fig. 5. Tuning results of the parameter mt .

TABLE I

Accumulative Performance Improvement (Evaluated by

SROCC) of the Proposed VQM

LIVE (Training) LIVE (Test) IVP
DCP 0.7911 0.6639 0.4478

DCP+CSF 0.8157 0.7527 0.7462
DCP+CSF+SM 0.8354 0.7832 0.7949

DCP+CSF+SM+TM 0.8493 0.8117 0.8059
DCP+CSF+SM+TM+AT 0.8590 0.8284 0.8392

CSF+SM+TM+AT 0.7712 0.6914 0.7901

DCP: decoupling, CSF: contrast sensitivity function, SM: spatial masking,
TM: temporal masking, AT: asymmetric tracking.

of the proposed VQM on both the training and test sets of
LIVE video database, and the full set of IVP video database. It
can be observed that by simulating the HVS processing using
motion-based models as introduced in Section III, substantial
improvements can be achieved in comparison to assessing
quality directly after separating the impairments.5 It is worth
noting that similarly the spatial masking factor ms can be tuned
to further improve the predictive performance of the proposed
VQM on the training set. However, since the more the tuning
parameters, the more likely the algorithm over-fits the training
data, the spatial masking factor ms is simply set to 1 as in our
previous work [1].

C. With/Without Decoupling

To verify the benefits from the separation of detail losses
and additive impairments, we develop another metric which
uses the same HVS processing modules as those of the pro-
posed VQM but treats the distortions integrally (i.e., without
decoupling). To be more specific, the distortions, i.e., the
differences between the original and distorted videos, are
represented into the wavelet domain. Their intensities are mod-
ulated by the CSF, spatial masking,6 and temporal masking
models, as introduced in Section III, in order to simulate the
HVS processing of the distortions. Equation (13), which is
similar to the classical Minkowski summation typically used
for information pooling, is applied in the spatial pooling.
The approach discussed in Section III-G is employed as the
temporal pooling process. The parameters (i.e., mt , a+, a−)
are tuned on the same training set. Its predictive performance

5In this case, the weighting factor w is also determined by using the training
set of LIVE video database. Temporal pooling is implemented simply by
averaging the frame-level quality scores.

6In this case, the original frames serve as the spatial maskers.
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is shown in the last row of Table I. It can be observed that
in comparison to the proposed VQM, the performance of
this VQM without decoupling degrades significantly. It may
serve as evidence that decoupling detail losses and additive
impairments is indeed beneficial to video quality assessment.

D. Overall Predictive Performance

There are seven visual quality metrics tested in the experi-
ments, i.e., PSNR, FSIM [53], IWSSIM [54], VSSIM [55], VQ
model [5], MOVIE [19], and the proposed metric. Most of the
codes were downloaded from the authors’ websites, except for
PSNR and VSSIM which were implemented by us. FSIM and
IWSSIM are the representatives of the state-of-the-art image
quality metrics. They are extended to video quality metrics
simply by averaging the frame-level quality scores. FSIM
assesses image quality by using two low-level features, i.e.,
the phase congruency and the gradient magnitude. IWSSIM is
an improved version of image quality metric SSIM [14], where
mutual information between the reference and distorted images
is used to weight the SSIM index. VSSIM, VQ model, and
MOVIE are popular video quality metrics. VSSIM is an exten-
sion of SSIM to video quality assessment, mainly by consider-
ing two observations that: 1) dark regions usually do not attract
eye fixations; and 2) SSIM performs less stable when very
large global motion occurs. Therefore, VSSIM assigns smaller
weights to the dark regions and frames with large global
motion. VQ model is a well-known reduced-reference video
quality metric, which has been standardized in America (ANSI
T1.801.03-2003) and was recommended by the ITU [56] due
to its good performance in the VQEG Phase II validation
tests [57]. It extracts statistical features (e.g., mean, standard
deviation of the spatial luminance gradients) from 3-D cubes
(e.g., 8 pixel × 8 lines × 0.2 s) for quality comparison.
MOVIE is the state-of-the-art video quality metric which ex-
ploits motion information to weight distortions in 105 spatio-
temporal frequency subbands, as introduced in Section II.

As mentioned in Section IV-B, 60 videos of the LIVE
video database are used for the parameter training. The seven
visual quality metrics are tested on the remaining 90 videos
of LIVE and the full set of IVP (128 videos). The scatter
plots of the proposed metric on the test sets are shown in
Fig. 6. Each dot represents a test video. The vertical axis
denotes the subjective ratings, and the horizontal axis denotes
the nonlinearly mapped metric’s outputs. Subjectively, if the
dots scatter closely around the dashed line, then it means that
the predictions of the metric and the subjective ratings of the
human observers have a strong correlation. For illustration,
Fig. 6 also shows the scatter plots of PSNR on both databases.
By comparison, it can be observed that the scatter plots of the
proposed metric demonstrate a stronger correlation between
the metric’s outputs and the subjective ratings.

The objective performance comparison is shown in Table II.
On both video databases the proposed video quality metric
achieves the state-of-the-art predictive performance in terms of
the three performance evaluation criteria, i.e., LCC, SROCC,
and RMSE. PSNR demonstrates poor performance on LIVE
but quite good performance on IVP. The inconsistent perfor-
mance of PSNR across the two databases may be due to

Fig. 6. Comparison between scatter plots of PSNR and the proposed VQM
on test set of LIVE video database (90 videos) and full set of IVP video
database (128 videos). (a) PSNR (LIVE test set). (b) Proposed (LIVE test
set). (c) PSNR (IVP full set). (d) Proposed (IVP full set).

the fact that IVP contains a larger portion of videos with
coding artifacts which is in favor of PSNR since it is well
acknowledged that PSNR is better at handling coding artifacts
than the transmission artifacts. Both FSIM and IWSSIM show
relatively good performances on both databases, considering
the fact that they measure spatial distortions only and do not
exploit any temporal HVS characteristics for video quality
assessment. Hence, they can serve as good start points for de-
veloping more advanced video quality metrics. The predictive
performances of VSSIM on both databases are surprisingly
low, probably because that SSIM is not effective enough as
a spatial quality index and it does not make the best use
of the motion information to simulate the HVS perception.
As a practical reduced-reference video quality metric, VQ
model performs relatively well, especially on the LIVE video
database. MOVIE is the second best performer on LIVE, but
due to its great demand for computing resources,7 we cannot
present its performance on IVP video database. It should be
noted that none of the visual quality metrics in our experiments
particularly takes into account how the video resolution affects
quality perception. However, the proposed method takes the
ratio of viewing distance to picture height (d/h) as input for
CSF calculation, as shown in (8) and (11). For LIVE and
IVP databases, this ratio is set to 6 and 3, respectively. This
additional information may have favored the proposed metric
in the performance comparison.

Table II also lists the results of the F-test. F-test assesses the
statistical significance of the performance difference between
two algorithms. In this paper, F-test is conducted on the
prediction residuals of the quality metrics, i.e., the differences
between the metric’s outputs (after nonlinear mapping) and
the subjective scores. The prediction residuals are supposed

7The code of MOVIE runs out of memory when processing HD videos.



LI et al.: FULL-REFERENCE VIDEO QUALITY ASSESSMENT 1109

TABLE II

Performance Comparison Between Seven Visual Quality Metrics on Two Subjective Quality Video Databases,

i.e., LIVE Test Set (90 Videos) and IVP Full Set (128 Videos)

PSNR FSIM IWSSIM VSSIM VQM MOVIE Proposed
LCC 0.459 0.690 0.721 0.433 0.718 0.783 0.846

LIVE SROCC 0.455 0.689 0.713 0.448 0.737 0.758 0.828
(test set) RMSE 9.999 8.240 7.837 10.68 7.932 7.128 6.432

Fcritical = 1.4199 Variance 99.46 63.69 60.49 113.0 61.44 48.23 34.83
Kurtosis 2.36 2.55 2.52 2.24 3.07 2.99 2.56

F-test 1 1 1 1 1 = –
LCC 0.687 0.707 0.640 0.546 0.672 – 0.837

IVP SROCC 0.694 0.717 0.640 0.565 0.685 – 0.839
(full set) RMSE 0.759 0.739 0.803 0.875 0.767 – 0.572

Fcritical = 1.3404 Variance 0.580 0.550 0.649 0.771 0.591 – 0.330
Kurtosis 3.50 4.87 4.54 3.20 4.72 – 5.03

F-test 1 1 1 1 1 – –

In the entries of F-test, symbols “1” and “=” respectively mean that the proposed metric is significantly better than or equivalent to the metric indicated by
the first row of the table at 95% confidence level.

TABLE III

Performance Comparison on Two Distortion Subsets (Coding: H.264+MPEG2, and Trans.: IP+Wireless) and Five Individual

Distortion Types (H.264, MPEG2, IP, Dirac, Wireless), Using SROCC as the Performance Measure

PSNR FSIM IWSSIM VSSIM VQ Model MOVIE Proposed
Coding LIVE(test) 0.257 0.656 0.649 0.467 0.752 0.752 0.821

IVP 0.807 0.878 0.857 0.802 0.904 – 0.896
Trans. LIVE(test) 0.507 0.758 0.742 0.429 0.751 0.757 0.841
H.264 LIVE(test) 0.225 0.650 0.662 0.461 0.737 0.749 0.850

IVP 0.782 0.851 0.802 0.732 0.864 – 0.842
MPEG2 LIVE(test) 0.322 0.621 0.640 0.461 0.865 0.808 0.822

IVP 0.741 0.775 0.733 0.781 0.846 – 0.773
IP LIVE(test) 0.313 0.701 0.721 0.296 0.777 0.647 0.806

IVP 0.679 0.551 0.390 0.536 0.556 – 0.730
Dirac IVP 0.846 0.894 0.880 0.882 0.912 – 0.923

Wireless LIVE(test) 0.645 0.758 0.685 0.455 0.763 0.824 0.777

The bold entries denote the best performer in terms of SROCC. The underlined entries denote the statistically best performer (with 95% confidence). The
italic entries indicate metrics that are statistically indistinguishable from the underlined ones.

to be Gaussian, and smaller residual variance implies more
accurate prediction. For example, to compare two metrics A

and B, their residual variances VA and VB are calculated.
Let F denote the ratio of VA to VB (VA > VB). If F is
larger than Fcritical which is calculated based on the number
of residuals and a given confidence level, then the difference
between the two metrics is considered to be significant at the
specified confidence level. Table II lists the residual variances
of each metric on the two databases, and also the Fcritical

values at 95% confidence level. The kurtosis values of the
prediction residuals are provided in Table II as a measure
of the Gaussianity: typically if the residuals have a kurtosis
between 2 and 4 then they are taken to be Gaussian. In the
entries of the F-test, symbol “1” or “=” denotes that the
proposed method is statistically better than or equivalent to its
competitor with 95% confidence. It is evident that on LIVE
and IVP subjective quality video databases the proposed video
quality metric outperforms most of its competitors statistically.

E. Performance on Individual Distortion Types

Table III shows the predictive performances of the VQMs
on two distortion subsets (i.e., coding: H.264+MPEG2, and
transmission error: IP+wireless) and five individual distortion

types (i.e., H.264, MPEG2, IP, Dirac, wireless). For easier
comparison, only the SROCC values are listed. SROCC is
chosen because it is suitable for measuring a small number
of data points and its value will not be affected by an
unsuccessful monotonic nonlinear mapping. In Table III, the
bold entries denote the best performer in terms of SROCC. The
underlined entries denote the statistically best performer (with
95% confidence), and the italic entries indicate metrics that
are statistically indistinguishable from the underlined ones.
It can be observed from Table III that the proposed VQM
demonstrates quite good performance. It achieves the highest
SROCC on 6 of the 11 video sets. It is the statistically
best performer on 7 of them, and in all the other cases, its
performance is statistically equivalent to the best performer.
Due to the limited number of videos in each subset, we cannot
draw a solid conclusion on the best VQM regarding individual
distortion types. However, it can be concluded in general that
VQ model and the proposed method deliver relatively better
results. Although its overall performance is intermediate as
illustrated in Table II, VQ model performs quite well for
individual distortion types, especially MPEG2 compression.
It may be due to the fact that the parameters of VQ model are
tuned by using many MPEG2 compressed videos [60].
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TABLE IV

Cross-Distortion Performance Evaluation (SROCC) of the

Proposed VQM on LIVE Video Database

Test Set
H.264 MPEG2 IP WirelessTraining Set

H.264 0.926 0.830 0.764 0.789
MPEG2 0.917 0.893 0.758 0.775

IP 0.852 0.785 0.842 0.771
Wireless 0.909 0.790 0.778 0.800

The bold entries denote the best performances for each distortion type
(i.e., training and testing on the same data set).

TABLE V

Cross-Distortion Performance Evaluation (SROCC) of the

Proposed VQM on IVP Video Database

Test Set
H.264 MPEG2 IP WirelessTraining Set

H.264 0.854 0.799 0.926 0.741
MPEG2 0.820 0.849 0.903 0.752

Dirac 0.829 0.798 0.931 0.735
IP 0.823 0.818 0.908 0.790

F. Cross-Distortion Performance Evaluation

Tables IV and V show the experimental results of cross-
distortion performance evaluation of the proposed VQM on
LIVE and IVP video databases, respectively. As in Table III,
only the SROCC values are listed, which will not be changed
by any monotonic nonlinear fitting. The first column indicates
the training set, while the first row indicates the test set. As
introduced in Section IV-B, four parameters are tuned by using
the training set. The bolded diagonal entries denote the best
performances (training and testing on the same data set) of the
proposed VQM for each distortion type.

Observing the experimental results, it seems that given
the optimal parameter values for each distortion type the
proposed VQM demonstrates a large performance variance
across different distortion types. In general, the proposed
VQM tends to be better at evaluating coding artifacts (H.264,
MPEG2, Dirac) than transmission artifacts (IP, wireless) on
each database. Transmission artifacts typically occur in local
regions which often attract viewer’s attention. They cause other
distortions less noticeable. By incorporating visual saliency
model into our VQM, the above-mentioned phenomena can
be taken into account and the transmission artifacts may be
better handled. From Table V, it can be observed that no
matter what the training set is, the predictive performance
of the proposed VQM is always good for Dirac wavelet
coding artifacts. The reason may be that Dirac wavelet coding
only employs the intracoding mode and according to our
observation the visual quality across sequential frames is quite
smooth. These properties of the Dirac coded videos make the
quality prediction much easier.

V. Conclusion

In this paper, we proposed a novel full-reference video
quality metric. Based on our previous work [1], two distinct

types of spatial distortions, i.e., detail losses and additive
impairments, were decoupled and evaluated in the wavelet
domain. Motion estimation was performed to derive motion
vectors which then were used in the simulation of the HVS
processing of the spatial distortions. The simulated HVS
characteristics included the HVS contrast sensitivity modeled
by Daly’s eye movement spatio-velocity CSF, and both spatial
and temporal visual masking implemented in an engineering
manner. The quality impacts of the two types of spatial dis-
tortions were assessed using distinct equations and integrated
simply by weighted summation. Ultimately, the frame-level
quality scores were processed taking into account cognitive
human behaviors and averaged to generate the sequence-level
quality score depicting the perceptual visual quality of the
whole video sequence. Rather than test on only one database
as most previous studies did [19], [20], [30], [34], [36], [50],
[55], [58], [59], two subjective quality video databases, i.e.,
LIVE and IVP, are used for performance comparison. It can be
observed from the experimental results that on both databases
the proposed full-reference video quality metric achieves the
state-of-the-art performance in matching subjective ratings.
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