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ABSTRACT 

 

In practice, multiple types of distortions are associated with 

an image quality degradation process. The existing machine 

learning (ML) based image quality assessment (IQA) 

approaches generally established a unified model for all 

distortion types, or each model is trained independently for 

each distortion type by using single-task learning, which lead 

to the poor generalization ability of the models as applied to 

practical image processing. There are often the underlying 

cross relatedness amongst these single-task learnings in IQA, 

which is ignored by the previous approaches. To solve this 

problem, we propose a multi-task learning framework to train 

IQA models simultaneously across individual tasks each of 

which concerns one distortion type. These relatedness can be 

therefore exploited to improve the generalization ability of 

IQA models from single-task learning. In addition, pairwise 

image quality rank instead of image quality rating is 

optimized in learning task. By mapping image quality rank to 

image quality rating, a novel no-reference (NR) IQA 

approach can be derived. The experimental results confirm 

that the proposed Multi-task Rank Learning based IQA 

(MRLIQ) approach is prominent among all state-of-the-art 

NR-IQA approaches. 

 

Index Terms— Rank learning, image quality 

assessment, machine learning, MOS, pairwise comparison 

 

1. INTRODUCTION 

 

Three categories of NR IQA approaches were presented in 

the literature. The first category of approaches takes the 

behavior of specific distortions into consideration. In [1], 
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Sheikh et al. employed wavelet statistical model to capture 

the distortion introduced by JPEG 2000. Liang et al. [2] 

combined the sharpness, blurring, and ringing measurements 

together to evaluate the visual quality of the JPEG 2000 

coded image. Brandao et al. [3] proposed an NR-IQA 

approach based on the DCT domain statistics to evaluate the 

quality of JPEG coded image. In [4], R. Ferzli et al. integrated 

the concept of just noticeable blur into probability summation 

model to measure sharpness/ blurriness. The second category 

of approaches uses quality aware clustering. They group the 

image patches of training set into the given number of classes 

based on local image features, such as histogram of oriented 

gradients (HoG), difference of Gaussian (DoG) and Gabor 

filter. Each cluster center has a quality score which is derived 

from the qualities of image patches falling into this cluster. 

Associating cluster centers with their qualities, the 

researchers established a codebook. Patches of a test image 

look up codebook to search the most similar codewords and 

retrieve the associated quality values. In [5], a visual 

codebook associated Gabor filter based local appearance 

descriptors with MOS. The authors of [6] used FSIM [7] 

instead of MOS as image patch quality to establish codebook. 

The third category is to utilize machine learning (ML) tool to 

map image features onto image qualities. In [9], Moorthy et 

al. proposed to use support vector machine (SVM) and 

support vector regression (SVR) to learn a classifier and an 

ensemble of regressors for image distortion classification and 

computing quality of specific distorted image. It deploys 

summary statistics derived from an on natural scene statistics 

(NSS) wavelet coefficient model, using a two-step 

framework for IQA: distortion classification and distortion 

specific IQA regression. In [8], Tang et al. proposed an 

approach similar to [9] but with more elaborate features, 
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including distortion texture statistics, blur/noise statistics and 

histogram of each subbands of image decomposition. In our 

previous effort [1], a novel IQA model applying rank learning 

and pairwise comparison (PC) to IQA was investigated. 

In existing works on ML based IQA, two issues have been 

intensively studied. One is the image feature. The so-called 

NSS image feature [9] was widely used and its variants [8] 

were proposed. The other concerns learning algorithm. The 

popular one learning algorithm is applying SVM/SVR to 

identify distortion type and pool image feature into a number 

result, where a SVR is preceded by a SVM classifier to 

classify distortion type and perform distortion-aware IQA [9]. 

In [8], the authors raised a more sophisticated image feature 

while processing all kind of distortion types with the same 

model without distortion type discrimination. This two kinds 

of algorithms are associated with at least one of the problems 

as following: 1) arranging training set into several clusters, 

there would be less training samples for each training task, 

which possibly results in overfitting and weak generalization 

capability of trained model; 2) the common features shared 

by different distortion types are not exploited efficiently. 

Therefore, a combination of “emphasize individuality” and 

“exploit commonness” would create better performance.  

Toward this end, we propose a multi-task rank learning 

approach for IQA (MRLIQ). In this approach, we construct 

multiple IQA models, each of which is responsible for one 

distortion type in order that each model can accurately 

describe the specific characteristics of each distortion type. 

Different from single-task learning approach, these IQA 

models are integrated into a multi-task learning task, and they 

are trained simultaneously. Thus, the relatedness and 

information sharing across multiple training tasks are 

effectively exploited to improve the generalization of each 

model. In addition, departing from the conventional machine 

learning based IQAs, the proposed approach targets at 

pairwise (PC) image quality rank instead of numerical image 

quality rating to establish the optimization target, which 

follows our previous work [1].  

The rest of this paper is arranged as follows. Section II 

describes the proposed MRLIQ in detail. Section III presents 

the experimental results. And, the final section concludes this 

paper. 

 

2. MULTI-TASK RANK LEARNING FOR IMAGE 

QUALITY ASSESSMENT 

 

Single-task learning is independently trained on the subset of 

the whole training set, which ignores the intrinsic relatedness 

among different tasks. For example, one can train several 

IQA models, each of which is responsible for one distortion 

type. There are two problems in such a processing. One is that 

there would be less training samples allocated to each task, 

which possibly results in overfitting and harms the 

generalization capability of learned model. The other is that 

the common features among different distorted images are 

not exploited. Multi-task learning is different from signal task 

learning in that the multiple tasks are trained simultaneously 

instead of independently. The fact is that all samples (with all 

distortion types) are used for training each task (each sample 

concerning a weighting to each task), while only samples 

with the same distortion type are used in single task scheme. 

Therefore, the multi-task scheme can exploit underlying 

intrinsic relatedness among multiple tasks and capture 

shared/common information of training data. It has attracted 

extensive attention in many domains, such information 

retrieval (IR) and visual saliency modeling [10]. To the best 

of our knowledge, it has not been applied to IQA yet.  

2.1. Single-task rank learning  

In [1], a single task ranking learning algorithm was proposed, 

where only one task and therefore one ranking model were 

trained. Given a subjective image database, we represent the 

image features {𝑥𝑖 ∈ 𝑅𝐿} and the corresponding MOSs {𝑦𝑖 ∈
𝑅}, i=1, 2, …, M. Thus, the goal of a rank learning based IQA 

can be described as identifying the ranks of {xi} with respect 

to {yi}. Toward this end, we infer a ranking function φ ∶ 𝑥 →
R trained on the basis of {xi, yi}, to assign rank order to each 

xi. That is, φ(xi) > φ(xj) indicates that xi ranks higher than xj 

with respect to image quality. In [1], only one task and 

therefore one ranking model φ was trained on all distorted 

images as 

   
I I

min ( ) ( )


 
  

 

M

u i u i

u i

y y x x


  ,              (1) 

for all types of distortions (e.g., 5 distortions for LIVE image 

database), where φ is usually assumed to be a linear function, 

i.e., 𝜑(𝑥) = 𝜔𝑇 ∙ 𝑥  for simplicity, and both x and ω  are 

vectors length of L. This distortion-unaware model is inferior 

to the distortion-specific model in that the significant 

characteristics difference are among different distortions.  

2.2. Multi-task rank learning  

For distortion-specific purpose, we can directly apply the 

proposed single task learning [1] to learn a specific model for 

each distortion. Such a model is distortion-specific, and 

therefore has better prediction accuracy. We assume to group 

the training set into K clusters {Sj}, j=1,2,…,K with respect 

to their distortion types, and a specific model is trained on 

each cluster to have an specific ranking function φj. Let the i-

th image in the j-th cluster 𝑥𝑖
𝑗

 (i=1,2,…,mj, j=1,2,…,K) 

∑ 𝑚𝑗
𝐾
𝑗=1 = 𝑀), and the corresponding label (MOS or DMOS 

in IQA) 𝑦𝑖
𝑗
, the j-th model 𝜑𝑗  is trained on the cluster Sj 

consisting of mj distorted images and associated labels 

{(𝑥𝑖
𝑗
, 𝑦𝑖

𝑗
)} as: 

I I
min ( ) ( )



  
        

  


j

j

m

j j j j

u i j u j i

u i

y y x x


  ,           (2) 

where φ𝑗(𝑥) = 𝜔𝑗
𝑇 ∙ 𝑥 . Comparing to (1), mj training 

samples only concerning the j-th task are used for training 𝜑𝑗 

in (2). Applying (2) to K clusters, there would be K models 

each of which is specific for each distortion type. Although 

the model is distortion-specific, there would be two problems 

as mentioned earlier in the beginning of this section. 
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Therefore, we refer to a multi-task learning scheme to jointly 

train multiple models to avoid these two problems in this 

work. 

Comparing to single task, multi-task learning means that: 

1) all models {𝜑𝑗 , 𝑗 = 1,2, … , 𝐾}  concerned are trained 

jointly instead of independently (see (1) and (2)); 2) all 

training sampling are used for training each model. 

Obviously, a sample distorted by a certain distortion type 

should contribute more than others distorted by other 

distortion types to the model specialized by this distortion 

type. To explore the contribution of a given sample with a 

certain distortion type to each of the models, we define a 

matrix of distortion-cluster labels α={αij}. Initially, we set αij

∈{0, 1}, where αij = 1 indicates a sample x belongs to the 

cluster Sj. After applying a weight αij to a sample, this sample 

could be used in all training tasks. 

Fig. 1 describes the framework of multi-task learning. 

{𝜋(𝑥𝑖
𝑗
)}

𝑖=1

𝑚𝑗
 represents the rank list of {𝑥𝑖

𝑗
}
𝑖=1

𝑚𝑗
 of the j-th 

cluster by using corresponding 𝜑𝑗. {𝜋(𝑦𝑖
𝑗
)}

𝑖=1

𝑚𝑗
 is the rank list 

of MOSs by comparing their numerical values, which is the 

ground-truth in the proposed learning algorithm. From Fig. 1, 

the images are grouped into K clusters. The models {𝜑𝑗} are 

trained together instead of independently as (2). Note the red 

box in Fig. 1, all samples are involved in training task, and 

the multi-task training outputs K models. Each model can 

rank the image in the corresponding cluster. After ranking 

each cluster, the rank list of the whole training set can be 

obtained.  

For the convenience of statement, we firstly formulate the 

whole optimization function, and then detail each element. 

Let W be a L×K matrix with the j-th column equals to 𝜔𝑗, the 

bold α be a M×K matrix with the i-th row equals to 

{𝛼𝑖𝑗}𝑗=1
𝐾 which is a K-dimensional vector. Each of the entries 

of this vector represents the weight of the i-th sample as to 

the j-th task. Therefore, the objective for jointly training 

multiple IQA models can be formulated as 

   

 

,

1

min , ,

. . 1; 1,

{0,1}; [1, ]




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K
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j
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s t i M

j K







 

 ,                  (3) 

where L(W,α) is the empirical loss and ( , ) W   is the 

penalty term. 

2.2.1 Empirical loss 

The empirical loss accounts for the falsely ranked image pairs 

with regard to their MOSs as 

 
I I

1 1 1,

,
   

         
M K M

T T

ij u i j u j i

i j u u i

L W y y x x   ,    (4) 

where [p]I =1 if p holds; otherwise [p]I = 0. In (4), each pair 

of images (xu and xi, 𝑢 ≠ 𝑖) in the whole training set (M 

samples) are compared. Their MOSs are given by yu and yi 

respectively. The ranks of yu and yi gives the ground-truth of 

the comparison of xu and xi. If the ranks of 
T

j u
x  and 

T

j v
x  

conflicts with the ground-truth, the empirical loss L(W,α) 

increases. 

2.2.2 Distortion clustering 

To group images with the same distortion type into the same 

cluster, the penalty term is defined as 

   
2

1

, 1; 1

1
cos ,

  
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M K

uj vj u v

u v u v j

x x
M

  ,              (5) 

where cos(𝑥𝑢 , 𝑥𝑣 ) denotes the similarity of the u-th and the 

v-th image (u, v=1,2,…,M), which is computed as the cosine 

distance between two feature vectors xu and xv. If these two 

images have the same distortion types (e.g., αuj = αvj = 1) are 

correctly classified into the corresponding cluster, there is no 

penalty (αuj ‒ αvj = 0). Otherwise, i.e., two objects belonging 

to the same distortion category was mistakenly classified into 

two different clusters, the penalty would increase. 

2.2.3 Model correlation 

To solve the problem of lack the generalization ability with 

training these clusters respectively, taking an appropriate 

sharing of information across training tasks can avoid 

overfitting and improve the performance of each model. Then 

the penalty term can be defined as 

2 I

I I

1

 

     

       


K M

u v

i j u v

T T T T

i u i v j u j v

y y
K

x x x x   

.               (6) 

The influence of this penalty is two-fold. First, a sample 

mistakenly predicted by most models will be emphasized in 

training φi (i.e., a large 
I I



         T T

u v j u j v

j i

y y x x  ). 

This ensures the diversity of training samples for φi, leading 

to improved generalization ability. Second, a sample 

successfully predicted by most models will be ignored in 

training φi (i.e., a small
I I



         T T

u v j u j v

j i

y y x x  ). 

This guarantees the diversity of different models. With this 

penalty term, each task is actually related to all the training 

samples with different weights as stated in [10], leading to 

improved performance.  

With these penalty terms, the overall penalty can be written 

as the weighted linear combination of them.   

2.3. Training process 

By plugging (4) to (6) back (3), we encounter a non-convex 

optimization problem due to the function [p]I. As in [10], the 

 
Fig. 1. The proposed multi-task rank learning framework 
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Boolean terms related to variable ω is replaced by their upper 

bounds to facilitate the optimization as: 
( )

[ ] e


 
T T
j u j v

j j

x xT T j

u v I uvx x
 

                    (7) 

where the exponential upper bound is used since it is 

convex and can facilitate the optimization. After the terms 

containing the variable ω in (3) being replaced, the empirical 

loss function would turn out to be convex. In addition, two 

variable W and α are correlated in (3). Thus, the expectation 

maximization (EM) algorithm is employed to optimize W and 

α alternately.  

Firstly, the distortion-cluster labels α are initialized since 

the distortion types are known for all images. Then, W is 

initialized by minimizing (4) without penalty consideration. 

After initialization, W and α are optimized iteratively using 

EM algorithm. The detail algorithm steps can refer to our 

previous work on saliency estimation [10].  

It should be pointed that the models derived from (3) are 

only for ranking images with respect to their qualities instead 

of assigning a physical quantity (like PSNR) to each image. 

Thus, these models are used to rank images of the training set 

firstly. Then, a set of new models are deduced to describe the 

relation between ranks and MOSs of images by using 

interpolation techniques, such as polynomial curve fitting. 

For simplicity, the same notation is used to represent both 

quality ranking and quality assessment hereinafter.   

Given a new image, we have to choose a proper model for 

predicting its quality. As claimed in [9], the NSS feature and 

SVM classifier can efficiently identify the distortion type of 

an image. Thus, we adopt the classifier (a SVM classifier) in 

[9] to choose a proper model to estimate the quality of the 

input image. The classifier on LIVE image database and 

codec of extracting NSS feature is accessible by [15]. 

 

3. EXPERIMENTAL RESULTS AND DISCUSSIONS 

 

To evaluate the proposed algorithm, we perform our 

experiments on LIVE image database [11] which consists of 

29 reference images, each image has 5 distortion types (JPEG, 

JP2K, white noise (WN), Gaussian blur (GB) and fast fading 

(FF) channel distortions) and 5/6 distortion levels per type.  

The images in database are divided into training sets and 

testing sets. A training set consists of 80% of the reference 

images and their associated distorted versions, and a testing 

set consists of the remaining 20% of the reference images and 

their associated distorted versions. In order to ensure that 

MRLIQ is robust across content and is not biased by the 

specific train-test split, random 80% train-20% test split is 

repeated 100 times on LIVE image database. The media 

PLCC, SROCC and RMSE values across these 100 times 

training processes are tabulated in Tables 1-2, for each 

distortion category, as well as across distortion categories. In 

Tables 1-2, MRLIQ represents the proposed algorithm with 

only NSS feature in training model. We also compared 

MRLIQ with the state-of-the-art approaches, including four 

FR-IQA metrics: PSNR, SSIM, MS-SSIM and VIF, six NR-

IQA metrics: DIIVINE [9], LBIQ [8], CBIQ [5], BLIINDS-

II [16], TMIQ [18] and NIQE [19].  

As can be seen from Tables 1-2, although MRLIQ is not 

the best on all distortion types, it ranks within top-2 and 

without a large margin from the best one. Remarkably, 

MRLIQ is better than DIIVINE on all distortion types except 

“WN” distortion. It should be pointed that these two 

approaches have the same features, which implies that the 

proposed multi-task rank learning approach contributes to the 

achievement. The very meaningful point is that we take a 

fundamental departure from the traditional learning scheme 

by introducing pairwise rank learning and multi-task learning 

into IQA. The MRLIQ would be expected with more 

improvement space considering more elaborate feature and 

algorithmic optimization.  
Table 1. Median PLCC across 100 train-test combinations on the LIVE IQA 

database 

 JP2K  JPEG  WN  Blur  FF  All 

PSNR  0.8762 0.9029 0.9173 0.7801 0.8795 0.8592 

SSIM  0.9405 0.9462 0.9824 0.9004 0.9514 0.9066 

MS-SSIM  0.9746 0.9793 0.9883 0.9645 0.9488 0.9511 

VIF 0.9790 0.9880 0.9920 0.9760 0.9720 0.9610 

CBIQ  0.8898 0.9454 0.9533 0.9338 0.8951 0.8955 

LBIQ  0.9103 0.9345 0.9761 0.9104 0.8382 0.9087 

BLIINDS-II  0.9386 0.9426 0.9635 0.8994 0.8790 0.9164 

DIIVINE  0.9233 0.9347 0.9867 0.9370 0.8916 0.9270 

TMIQ  0.8730 0.8941 0.8816 0.8530 0.8234 0.7856 

NIQE  0.9370 0.9564 0.9773 0.9525 0.9128 0.9147 

MRLIQ 0.9368 0.9363 0.9402 0.9389 0.9495 0.9300 

 

Table 2. Median SROCC across 100 train-test combinations on the LIVE 
IQA database 

 
JP2K  JPEG  WN  Blur  FF  All 

PSNR  0.8646 0.8831 0.9410 0.7515 0.8736 0.8636 

SSIM  0.9389 0.9466 0.9635 0.9046 0.9393 0.9129 

MS-SSIM  0.9627 0.9785 0.9773 0.9542 0.9386 0.9535 

VIF 0.9670 0.9820 0.9840 0.9730 0.9630 0.9640 

CBIQ  0.8935 0.9418 0.9582 0.9324 0.8727 0.8954 

LBIQ  0.9040 0.9291 0.9702 0.8983 0.8222 0.9063 

BLIINDS-II  0.9323 0.9331 0.9463 0.8912 0.8519 0.9124 

DIIVINE  0.9123 0.9208 0.9818 0.9337 0.8694 0.9250 

TMIQ  0.8412 0.8734 0.8445 0.8712 0.7656 0.8010 

NIQE  0.9172 0.9382 0.9662 0.9341 0.8594 0.9135 

MRLIQ 0.9213 0.9281 0.9242 0.9357 0.9125 0.9276 

 

4. CONCLUSIONS 

 

In this paper, we have investigated multi-task rank learning 

for IQA. Due to the significant difference between the 

statistics of different distorted images, the multi-task learning 

training individual computer model for each type of distortion 

is more accurate than the methods without distortion type 

discrimination. In addition, multiple models are trained 

simultaneously on all training samples with the consideration 

of sharing common feature and highlighting specific feature 

of each task, which will enhance the generality capability of 

trained models. Moreover, MRLIQ takes a fundamental and 

interesting departure from the traditional learning framework 

on numerical rating optimization. 
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