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Abstract—In this paper, an image quality metric is proposed
by modeling the visual Horizontal Effect (HE) and saliency prop-
erty over structural distortions. Specifically, Structrue SIMilarity
(SSIM) is firstly performed to obtain the structural distortion map.
Subsequently, the obtained distortion map is refined by the visual
HE model, which depicts visual sensitivities of oriented stimuli
over different oriented contents. Finally, in order to describe
the local Human Visual System (HVS) conspicuities, a saliency
pooling strategy is proposed to generate the resulting image
quality index. The experimental results have demonstrated that
the proposed method outperforms SSIM and Visual Information
Fidelity (VIF), which indicates that the obtained similarity index
is more consistent with the perceptual evaluation of image quality.

Index Terms—Horizontal effect (HE), human visual system
(HVS), image quality assessment (IQA), structure SIMilarity
(SSIM).

I. INTRODUCTION

T HE measurement of image quality plays a very important
role in many image processing tasks, such as image com-

pression and enhancement, etc. As humans are the end-users
of images and videos, one straightforward way for evaluating
image quality is subjective testing. However, it is very expensive
and time-consuming, which makes it impractical for the image
processing applications. These drawbacks lead to the develop-
ment of image quality metrics that can automatically evaluate
the image perceptual quality.

The most popularly used image quality metrics are the Mean
Squared Error (MSE) and the related Peak Signal-to-Noise
Ratio (PSNR). These measurements are appealing for their
simple formulation. However, they do not correlate well with
the HVS [1], [2], because they just focus on the pixel value
differences but ignore the image content and human perception
properties. Recently, the psychophysical HVS features [4] have
been discussed for assessing the image quality [3], of which
the light adaptation, contrast sensitivity function, and masking
have been considered in the Just-Noticeable Difference (JND)
model [5]–[8]. However, the JND only models the HVS error
tolerance property, which masks the distortions below the
threshold. As to the distortions above the threshold, it cannot
efficiently model the HVS sensitivity. Channel decomposition
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[9] is also employed to assess the image quality by modeling
the HVS sensitivities over different frequencies. Recently, the
Image Quality Assessment (IQA) methods attempt to char-
acterize the features which HVS may associate with loss of
quality, such as blurring, blocking, and so on. The IQAs that
embody this approach include SSIM [2], [10], [12] and VIF
[13]. SSIM is derived by capturing the information loss of
image structures, while VIF employs the mutual information
between the original and test image to evaluate the image
quality. In [14], it has been demonstrated that SSIM and VIF
have similar performances. And SSIM treats different oriented
distortions and different located distortions equally. However,
as the HVS perceives images with local varying saliencies [20],
the pooling HVS feature [4] needs to be considered to evaluate
the image quality. Also, the HVS HE property [15]–[18] of
natural scenes has been researched on for modeling the visual
sensitivities of different distortions over image contents with
different orientations, in comparison with the HVS oblique
effect property for the simple patterns, such as isolated gratings
[16]. Therefore, the HVS HE property needs to be taken into
account when evaluating the image quality.

In this paper, the HVS properties over structural distortions
are considered to improve the IQA performance. Firstly, SSIM
is employed to obtain the structural distortion map. Secondly,
the distortion map is refined by the HVS orientation sensitivity
modeled by the HE. Finally, the image quality index is obtained
by a saliency pooling strategy over the distortion map.

II. PROPOSED IMAGE QUALITY ASSESSMENT FRAMEWORK

To model the HVS properties over the image structural dis-
tortions for depicting the image quality, SSIM is performed on
the test image to obtain the structural distortion map SD:

(1)

where is the reference image, is the test image, is
the pixel location, indicates the luminance
similarity, denotes the contrast similarity,
and is the structure similarity, , and are
three parameters used to balance the relative importance of the
three components, which are set as 1 to simplify the expression.
The definitions can be referred to [2], [10], and [12].

A. Visual Horizontal Effect Modeling

According to Hansen et al.’s researches on human vision
[15]–[18], the oblique content is perceived to be the best,
whereas the horizontal content is the worst for natural images;
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also the oblique stimuli are perceived to be the best in natu-
ralistic broadband stimuli. The phenomenon is known as HE.
Hence, we want to model the visual HE sensitivity, which the
HVS may associate with the image quality.

In order to model the visual HE sensitivity, firstly we need to
obtain the orientation and energy information for both the con-
tent and stimulus. In our approach, the reference image is re-
garded as the original content, while the difference between the
test and reference images is denoted as the stimulus superposed
onto the content. As we all know, the kernels of Gabor filters
are similar to the 2-D receptive field profiles of the mammal
cortical simple cells, which exhibit desirable characteristics of
spatial locality and orientation selectivity [19]. Therefore, dif-
ferent oriented Gabor filters are employed to filter the original
content and stimulus to generate different oriented responses.
According to the maximum response, the orientation and energy
are determined for depicting the local features of the visual in-
puts. However, in some local smooth regions, all the filtering re-
sponses may appear very small, which are regarded as isotropic
for its weak influences over all the orientations.

Four representative images and their distorted versions from
the LIVE database [21] are selected to train the visual HE sensi-
tivities over the image structural distortions. The orientation in-
formation of the images and their distorted versions are shown
in Fig. 1. It can be observed that certain oriented contents dom-
inate each selected image, such as: the isotropic contents domi-
nate PARROTS; 135 degrees and horizontal contents dominate
BIKES and so on. Moreover, we can see that different oriented
stimuli are superposed onto different oriented contents with dif-
ferent probabilities. Therefore, we can employ the four rep-
resentative images (with different dominant oriented contents)
and their distorted versions (with different oriented stimuli) to
train the visual HE sensitivities. During the training process, the
following three aspects should be considered.

a) The content orientation is isotropic. The stimuli presented
in these regions are easy for HVS perception, which is
modeled by contrast masking in JND models [5]–[8].
Therefore, HVS is highly sensitive.

b) The stimulus orientation is the same as the content ori-
entation. It can be viewed as a signal enhancement rather
than distortion. Therefore, the lower HVS sensitivity is
expected and the distortion is difficult to detect.

c) The stimulus orientation is perpendicular to the content
orientation. The HVS is extremely sensitive and the dis-
tortion is very easy to perceive.

The initial HE sensitivity values in [16] are firstly slightly
modified (increased or decreased) by referring to the aforemen-
tioned three aspects. Based on the structural distortion map SD,
if the HE refined SSIM values correlate better with the subjec-
tive Differential Mean Opinion Score (DMOS) values, which
are provided by the database, the HE sensitivity values are tuned
by following the same direction. Otherwise, the HE sensitivity
values are tuned by following the opposite direction. After sev-
eral iterations, the optimized HE sensitivity values are obtained.
The optimized HE sensitivity values of four dominant oriented
stimuli over five prevailing biased contents are indicated by the
spots in Fig. 2. Based on these sensitivity values, the cubic poly-
nomial functions are fitted to model the sensitivities of oriented
stimuli over the same content, illustrated by the curves in Fig. 2.

Fig. 1. Orientation information of the reference images and their distorted ver-
sions. Left: content orientation distribution (x-axis: content orientation; y-axis:
pixel number probability). Right: content and stimulus orientation joint dis-
tribution (x-axis: (content orientation, stimulus orientation) pair; y-axis: pixel
number probability).

Fig. 2. HE sensitivity values of different orientated stimuli over different con-
tent bias (each color represents a biased content, and the horizontal axis indicates
the stimulus orientation).

For the isotropic biased content, the visual sensitivity values are
much larger than the other biased contents, which match the
HVS contrast masking properties. For the isotropic and hori-
zontal biased contents, the visual sensitivity values of oblique
orientations (45 and 135 degrees) are higher than that of the ver-
tical direction, while the horizontal sensitivity value appears the
smallest, which matches the experimental results of HE. As for
the 45- and 135-degree biased contents, sensitivity values of the
orientations around its perpendicular direction are the largest,
whereas the sensitivity value of the same orientation appears
to be the smallest, which matches the aforementioned aspects.
For the vertical biased content, the largest sensitivity value ap-
pears around 45 degrees according to the HVS HE property and
around zero degrees for the perpendicular property. Therefore,
the HVS appears to be the most sensitive between zero and 45
degrees by considering the HVS properties together. The cubic
polynomial function for depicting the visual HE sensitivities of
orientated stimuli over different oriented contents is expressed
as:

(2)

where is the HE sensitivity function illustrated in Fig. 2,
and denote the orientation information of the content and
stimulus, respectively, which are determined by the maximum
responses of the oriented Gabor filters. , and are
the parameters which relate to the content orientation . Fur-
thermore, the higher the stimulus energy, the worse is the visual
quality of the test image. Therefore, a relationship between stim-
ulus energy and image perceptual quality should be considered.
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A stimulus energy adaptation factor is used to refine the
structural distortion value, which is defined as

(3)

where is the stimulus energy obtained from the Gabor
filtering results, erf is the error function,

, and are set empirically for adjusting
the stimulus energy adaptation factor. Then the refined struc-
tural distortion map is obtained by:

(4)

Moreover, as we have mentioned before, when all the re-
sponses of Gabor filtering appear very small, the regions should
be regarded as isotropic. It means that the signal has no inclined
orientations. For the stimulus, it means that the distortion ob-
tained is spread over all the orientations. As the stimulus energy
is very small, it will have little effect on the image perceptual
quality, which can be modeled by JND [5]–[8]. In this case, the
HE sensitivity and stimulus energy adaptation factor should not
be taken into consideration. Therefore, a signal-dependent JND
model for the stimulus should be considered by neglecting the
influence of the invisible distortion, the magnitude of which is
smaller than a threshold Thr. However, according to our exper-
iments, the performance will not be obviously affected as the
threshold varies. Thereby, Thr is simply set as 2.2.

B. Saliency Pooling Strategy

As HVS processes local regions of images with different vi-
sual acuities, artifacts that are present in the attended regions are
better perceived than those present in the non-attended areas,
which means that the observer’s assessment of image quality
is prejudiced by the perceived structural distortions in salient
regions. Therefore, a relative measure of the importance of dif-
ferent regions, indicated by a saliency map, plays an important
role in evaluating the image quality. In this paper, we employ
the spectral residual model [20] to detect the saliency.

Given an image , Fourier Transform (FT) is firstly ap-
plied to obtain the amplitude spectrum and phase spec-
trum . The spectral residual can be generated based
on the log-spectrum representation of an
image according to

(5)

where denotes the averaged spectrum, which is derived
by convolving the log-spectrum with an averaging filter.
And it is claimed that the spectral residual contains some impor-
tant information of an image related to the HVS perception [20].
The primary nontrivial part of the scene is constructed by inverse
FT , which could be interpreted as the unexpected portion of
the image. The unexpected portion represents the saliency map

in spatial domain, which indicates the different visual im-
portances of different locations:

(6)

Based on , a saliency pooling strategy is proposed to gen-
erate the final similarity index for evaluating the image percep-
tual quality:

(7)

III. EXPERIMENTAL RESULTS

In this section, we compare the performance of our proposed
IQA method with other methods, i.e., PSNR, SSIM, and VIF.
The IQA methods are evaluated on the LIVE [21] and A57
databases [24], which comprise the most prevailing distortions.
The distorted images, excluding the ones generated from the
four training images, are used for evaluating the IQA perfor-
mances.

We follow the performance evaluation procedure employed
in the Video Quality Experts Group (VQEG) HDTV test [22]
and that in [11]. Firstly, a logarithmic function is employed to
fit the objective and subjective scores through a nonlinear map-
ping process. Subsequently, the Correlation Coefficients (CC)
between the subjective and the non-linearly mapped objective
scores, which provides an evaluation of the prediction accu-
racy, and the Spearman Rank-Order Correlation Coefficients
(SROCC), which measures the prediction monotonicity, are em-
ployed for evaluating the different IQA performances. Further-
more, the Mean Absolute prediction Error (MAE), and the Root
Mean Square prediction Error (RMSE) of the fitting procedure
are also utilized to measure the IQAs’ efficiencies. On one hand,
larger CC and SROCC values mean that the objective and sub-
jective scores correlate better, that is to say, a better performance
of the IQA. On the other hand, smaller RMSE and MAE values
indicate smaller errors between the two scores, hence a better
performance.

We compare the performance of the proposed IQA scheme
with PSNR, S-SSIM (Single-scale SSIM) [2], LDW-SSIM
(Local Distortion-Weighted SSIM) [10], ICW SSIM (Infor-
mation Content-Weighted SSIM) [12], SMW-SSIM (SMooth
region-Weighted SSIM) [23], and VIF [13]. The results are
listed in Table I. The performance of our proposed scheme
outperforms the other IQAs on the provided two databases with
larger SROCC and LCC, and smaller RMSE and MAE, which
means that our method demonstrates better performance across
a wide range of image distortions. The reason is that the SSIM
methods just employ different weights for different locations
of the image. However, they do not account for the orientation
sensitivity and saliency property of HVS. VIF [13] employs the
steerable pyramid to decompose the test image, which extracts
the image features at different scales and different orientations.
In this way, HVS orientation and saliency properties are in-
cluded. That is why it can outperform the other IQAs. However,
our method can more accurately model the HVS orientation
and saliency sensitivities over structural distortions, which
outperforms VIF. The scatter-plots of different IQAs are shown
in Fig. 3. It can be observed that the results of our proposed
method scatter more closely around the fitted line than other
IQAs, which indicates a better performance. Furthermore, it
can be observed that VIF performs well on LIVE, but poorly
on A57 database. The reason may be that the distortion model
embodied in VIF [13] cannot efficiently simulate the two new
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Fig. 3. Scatter plots of the DMOS values versus model predictions on the LIVE
database. Each sample point represents one test image. Top left: PSNR; top
right: VIF; bottom left: S-SSIM; bottom right: the proposed method.

TABLE I
PERFORMANCES OF DIFFERENT IQAS ON THE LIVE AND A57 DATABASE

TABLE II
PERFORMANCE OF EACH PHASE OF THE PROPOSED

SCHEME ON LIVE DATABASE

distortion types in A57, which are a) quantization of the LH
subbands of the image with equal distortion contrast at each
scale; b) JPEG 2000 with dynamic contrast-based quantization
compression [24]. However, as the proposed method models
the HE and saliency properties of the HVS, it can efficiently
capture the distortions in the image which are sensitive to the
HVS, no matter what the distortion type is. That is why the
proposed metric performs well on both of the two databases.

Moreover, we demonstrate the efficiency of each phase (i.e.,
HE sensitivity and saliency pooling) of our proposed scheme in-
dividually by evaluating its performance on the LIVE database.
The results are illustrated in Table II. Both the strategies improve
the IQA performance. However, the saliency pooling strategy
performs better than the HE sensitivity. Intuitively, the results
are in accordance with the human perception of a visual input.
While perceiving an image, we mainly focus on its interesting or
salient portion. If the part appears really interesting and attrac-
tive, we will examine it more carefully. Therefore, the saliency
pooling is important for image quality assessment. However, the
visual HE sensitivity appears to play a lesser but nevertheless an
important role in image quality assessment.

IV. CONCLUSION

In this letter, an image quality assessment method is proposed
by considering the visual HE sensitivity and saliency proper-
ties. The SSIM structural distortion map is refined by the visual
HE model. The image quality index is generated by saliently
pooling on the refined structural distortion map. Experimental
results demonstrate that the proposed scheme outperforms the
other IQAs, which means that the proposed metric correlates
well with the human perception of image quality.
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