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a b s t r a c t

In this paper, multimodal learning for facial expression recognition (FER) is proposed. The multimodal
learning method makes the first attempt to learn the joint representation by considering the texture and
landmark modality of facial images, which are complementary with each other. In order to learn the
representation of each modality and the correlation and interaction between different modalities, the
structured regularization (SR) is employed to enforce and learn the modality-specific sparsity and
density of each modality, respectively. By introducing SR, the comprehensiveness of the facial expression
is fully taken into consideration, which can not only handle the subtle expression but also perform
robustly to different input of facial images. With the proposed multimodal learning network, the joint
representation learning from multimodal inputs will be more suitable for FER. Experimental results on
the CKþ and NVIE databases demonstrate the superiority of our proposed method.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Facial expression presents a rich source of affective information
and thus is one of the most direct ways for us to understand the
psychological state of a person. Automatic facial expression recog-
nition (FER) is an important and challenging problem in the
communities of computer vision and pattern recognition, which
attracts much attention recently due to its potential applications in
many areas such as human–machine interfaces [21], robotics [22],
driver safety [23], communication and health-care [24].

There exist a number of FER approaches in the past years.
Generally speaking, the current methods can be broadly classified
into two categories based on the availability of the data for
recognition. The first category can be regarded as texture-based
methods [4–7]. Texture modality for FER represents the facial
image information, which displays face expression in pixel space.
As such, texture-related features are extracted from the pixel
value, which is capable of capturing detailed and subtle informa-
tion of facial expression. On the other hand, the features are very
sensitive to the image changes, such as luminance and masking
effects. Furthermore, the texture-related features correlate very
closely to each individual for FER. The other category is the
landmark-based methods [2,25,31]. Landmark indicates face key
points, the corresponding movements of which can help capture

the facial expression. However, the landmark movements cannot
efficiently capture the subtle changes, which may not be able to
distinguish the expressions with similar landmark information.

If the texture modality (facial image) is available, facial features
are extracted from the images which are further fed into classifiers
for recognition. The method in [5] firstly convolves the video clip
with Gabor motion energy (GME) filter in a filter bank for feature
extraction. In order to make the problem close to reality, the first six
frames are employed for feature extraction. Afterwards, support vec-
tor machine (SVM) is employed to train the features for expression
recognition. Similarly, SVM is also employed in [4] for FER. Prior to
being fed into SVM, non-negative matrix factorization (NMF) [14] is
performed by minimizing a cost function. Firstly, local patches are
extracted from each facial image, based on which the NMF is
performed to reconstruct a sparse and part-based representation of
the patches. Then SVM comes in handy to perform classification.
Moreover, Yang et al. [6] proposed to represent the dynamics of facial
expression for recognition. Haar-like features are employed for the
sake of simplicity and effectiveness. The K-means clustering method
is employed to generate the temporal pattern models of the expres-
sions, and the Adaboost learning is employed as the classifier for FER.

If the landmark modality (face key point) is available, features
can be extracted from the landmarks for FER. Similar to texture-
based methods, most landmark-based methods extract hand-
crafted features from input landmark before performing recogni-
tion. In [25], Perveen et al. proposed to search the bounding boxes
which help compute facial characteristic points (FCP). The facial
animation parameters, such as the openness of eyes, width of eyes
and height of eyebrows, are then evaluated via referring to the
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FCPs. With these animation parameters, the expression can be
further recognized by employing the Gini Index [28]. More
recently, Lorincz et al. [2] did a pioneering work on extracting
features from the landmark in 3D space for FER. Only the landmark
information is incorporated in 3D constrained local model (CLM).
Such process makes the proposed FER robust against head pose
variations. Additionally, they use either dynamic time warping
(DTW) or global alignment (GA) kernel algorithm to deal with
multi-frames considering the spatio-temporal attribute of facial
expression, and the landmark is tracked by using 3D CLM. After-
wards, the Euclidean distance is calculated to build matrix, where
the nearest correlation matrix is found with kernel, and the gram
matrix by DTW kernel or global alignment kernel is further
employed for SVM training. Finally, in order to minimize the
classification error, the best parameters are searched for both
kernels. With such processes, state-of-the-arts FER performance
was obtained. He et al. [31] conducted spontaneous facial expres-
sion recognition based on landmarks. First, they normalized the
sequences according to the pupil's coordinates. Afterwards, they
labeled landmarks on the onset and apex images manually and
tracked landmarks on the whole sequences. The features depicting
the point distance variation are extracted and the hidden Markov
model (HMM) is employed to recognize the facial expression.

Although tremendous progresses of FER have been made in the
past few decades, the problem remains with great challenges.
Mostly, all previous work treats the texture or landmark modality
independently, where only the texture or landmark modality is
employed for FER. It has been demonstrated that each single
modality is useful for FER. However, one single modality alone
cannot help obtain the details of facial expression variation while
avoiding the extraneous affections. The texture modality captures
the detailed changes of the face information, which will be helpful
for recognizing the subtle facial expression. However, external
variations, such as the lightning condition and masking effect, will
significantly affect the texture features, which will make the
textural-based FER very sensitive. On the contrary, the landmark
modality presents more robust property to the external affections.
However, the landmark modality just simply outlines the shapes
and contours of the face which is lack of sufficient detailed
information. In this case, the landmark modality cannot accurately
distinguish the subtle facial expression, specifically for the two
expressions with similar landmark information. Texture and land-
mark modalities seem to be complementary to each other. There-
fore, how to integrate the two modalities to improve the
performance of the FER system remains an open question. The
two modalities are of great difference, where the texture modality
mostly describes the facial detailed expression, specifically the
facial image content, and the landmark modality describes the
positions of face key points.

Nowadays, some algorithms were proposed to address the
representation learning for multiple modalities. In [8–11], multi-
modal deep belief network (DBN) [1] is developed for learning the
joint representations from the input multiple modalities. In [8],
the video and audio inputs were employed to learn a bimodal
DBN. In order to further discover the correlations among the two
modalities, both modalities are presented during feature learning
but only a single modality is used for supervised training, which
means that the deep autoencoder is trained to reconstruct both
modalities when given only one modality (video or audio input).
In [10], the multimodal DBN is trained to learn the joint repre-
sentation of the multimodal data, specifically the text and image
modalities. Firstly, two DBNs are trained for image and text
respectively. To form a multimodal DBN, the two trained DBNs
are combined by learning a joint RBM on top of them. In [11], Deep
Boltzmann Machine (DBM) is employed to train each modality. In
order to form a multimodal DBM, the two trained DBMs are

combined by adding an additional layer of binary hidden units on
top of them. From the work in [10,11], it is possible for the model
to find representations such that some hidden units are tuned only
for one modality while others are tuned only for the other
modalities [8].

Besides, there exists another defect with previous methods on
FER. As aforementioned, the previous FER methods can be
regarded as a type of two-step methods. Firstly, handcrafted
features from texture or landmark modality are extracted, which
are expected to represent the expression. Subsequently, the
classifiers, such as SVM or Adaboost, or employed for training on
the extracted features for FER. Therefore, in such cases, features
are the key components of the whole FER system. If the features
can accurately depict the expression and are of great discrimina-
tions to different expressions, the classifier can recognize the
expressions well. However, all the features are tuned by hand
and thus can hardly ensure the classifier to distinguish the
expression well. Therefore, it would be better to have feature
extraction and classification assembled together to be globally
optimized for FER.

In this paper, we make the first attempt to employ different
modalities and assemble the feature representation and classifica-
tion together for FER. Specifically, the facial texture and landmark
modalities are combined together to benefit from the inherent
properties of the two different modalities. A joint representation
for FER is learned from the texture and landmark modalities. In
order to ensure that the two modalities interact with each other
for the joint representation, a structured regularization method is
employed for each modality to control the connection tightness of
representations. FER is then performed based on the learnt
representation. With such multimodal learning process, the pro-
posed FER method can not only ensure the robustness of the
system to time resolution of the expressions but also make the
method robust against head pose variations. Additionally, the
multimodal learning combines feature extraction and classifica-
tion together and thus avoids the cumbersome task of features’
handcrafting.

The rest of this paper is organized as follows. In Section 2, our
proposed multimodal learning method is introduced. Experimen-
tal results are given and discussed in Section 3. Finally, Section 4
concludes the paper.

2. Multimodal FER by integrating texture and landmark

The proposed multimodal FER is introduced to jointly learn the
representations from multimodal inputs, specifically the texture
and landmark modalities. The texture modality is a collection of
local image patches cropped from the positions indicated by the
face key points, while the landmark modality depicts movements
of facial key points in the face expression sequence. The data
processing details are given in Section 3.2.

2.1. Multimodal learning architecture

The proposed multimodal learning architecture is illustrated in
Fig. 1, which takes different numbers and types of modalities as
inputs and outputs the final classification results. The proposed
multimodal learning architecture not only considers each modality
property but also accounts for the interactions of different mod-
alities. The proposed multimodal learning architecture is built by
stacking several layers together and feeding the hidden represen-
tation of the kth layer as the input into the ðkþ1Þth layer.
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The multimodal learning architecture in Fig. 1 can be formu-
lated as

L̂ ¼Ψ ðf kðf ðk�1Þ…f 2ðf SR1 ðx1; x2;…; xmÞÞÞÞ ð1Þ

Eq. (1) represents the global function of the proposed multimodal
learning method. L̂ is the output class label of the multimodal learning
network. f SR1 ð�Þ is the function that firstly maps the visual input layer to
the first hidden layer. As our method targets at a multimodal learning
network, f SR1 ð�Þ is an auto-encoder (AE) with the structured regulariza-
tion (SR), which enforces the modality-specific sparsity and density of
each modality. As illustrated in Fig. 2(a), AE is a simple learning circuit
aiming to transform inputs into outputs with the least possible amount
of distortion, where zi is the reconstructed signal of xi. It can be
observed that AE treats each input node of different modalities equally,
where the contributions of different modalities to the hidden nodes
cannot be well learned. However, different modalities may contribute
differently to the specific classification task, as demonstrated in Section
3. To overcome this limitation and fully exploit the contributions of
different modalities, AEwith SR is employed, which allows the network
to distinguish different modalities for individual treatments. Fig. 2
(b) illustrates the structure of AE with SR, where the connections
between the visual input nodes and hidden nodes as well as the
weights are learnt in a data-driven manner, which can distinguish and
learn the representation from different multimodal inputs for the final
classification task.

After the AE with SR mapping process, different modalities
have been transformed to the first hidden layer, each node of

which takes different modalities into consideration. AEs, f 2;…; f k,
are thus employed to map the feature to the final representation
for the classification. By stacking several AEs, the non-linear pro-
perties are fully exploited to generate the final joint representation
of the multimodal inputs ðx1; x2;…; xmÞ. Afterwards, Ψ ð�Þ denoting
the classifier, such as SVM, KNN, and softmax, takes the joint
representation as the input to perform the final classification tasks.

The training process can be performed greedily layer by layer.
This stacking architecture ensures the scalability of the learning
ability. On one hand, more layers can help improve the nonlinear-
ity representation ability of the neural network. On the other
hand, more layers will inevitably introduce more parameters, esp-
ecially for the top fully connected layers. Intuitively, more para-
meters demand more training data to build a robust deep network
and avoid the over-fitting problem. Therefore, the depth of the
proposed network should be adaptively determined by the specific
problem and the number of the training samples at hand.

2.1.1. Autoencoder (AE)
Each layer constituting the multi-layer learning architecture is an

autoencoder (AE) shown in Fig. 2, which consists of two components,
the encoder and decoder. An encoder eð�Þ encodes the input xARd to
some hidden representation eðxÞARdh , while a decoder dð�Þ decodes
the obtained hidden representation back to a reconstructed version
of x, to make the reconstructed signal to be as close as possible to the
input. Therefore, the encoder process can be viewed as a single
mapping function f : Rd-Rdh :

yi ¼ f ðxiÞ ¼ σðWxiþbÞ; ð2Þ

where yi represents the encoder output and xi represents the input of
the encoder. WARd�dh and b are the mapping weight and encoder
bias, respectively. σ denotes a non-linear function, which can employ
sigmoid, tanh, and rectified linear unit (ReLU) function. With this
non-linear mapping process, AE can present strong feature learning
capabilities [12].

In order to obtain the encoder parameters, the following opt-
imization problem needs to be solved by minimizing the recon-
struction error introduced from AE:

min
W ;b;c

lðx;W ; b; cÞð Þ; ð3Þ

where c is the decoder bias, lðx;W ; b; cÞ denotes the loss function to
capture the reconstruction error. There are some alternatives to
define the loss functions, such as the squared error or Kullback–
Leibler divergence (KLD) while the feature values lie in ½0;1�.
Taking the squared error as the reconstruction error, lðx;W ; b; cÞ,

multimodal input

AE with Structured  
Regularization

AE 

AE 

joint representation

Classifier (SVM
KNN softmax )

Mode 1 Mode N 

Fig. 1. Multimodal learning architecture for FER.

x1 xi xn

y1 yi yk 

+1

+1

z1 zi zn

x1 xi Xi+1 xn

y1 yi yk 

+1

+1

z1 zi zi+1 zn

Fig. 2. The structure of AE without SR (a) and with SR (b).
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Eq. (3) can be further represented as

lðx;W ; b; cÞ ¼ 1
2n

Xn
i ¼ 1

‖zi�xi‖22; ð4Þ

yi ¼ σðWxiþbÞ; ð5Þ

μi ¼
yiffiffiffiffiffiffiffiffiffiffiffi
y>
i yi

q ; ð6Þ

zi ¼W >μiþc: ð7Þ
where yi is the obtained hidden representations through the fee-
dforward encoder, Eq. (7) represents the decoder with the bias c,
and zi is the reconstructed signal through performing a round of
feedforward encoder and backward decoder. In order to reduce the
effect of filter scale, the L2-normalization is normally performed on
all hidden nodes of the encoder level as expressed in Eq. (6).

As aforementioned, if training each modality separately and lea-
rning a joint representation (e.g. RBM) on top of them, it is possible
for the model to find representations such that some hidden units are
tuned only for one modality while others are tuned only for the other
modalities [8]. Similarly, if we simply employ AE in Eq. (2) to map the
multimodal inputs into the hidden nodes, the network is to connect
all nodes of visible layer to nodes of the hidden layer, which means
that all the different modality features are treated equally. Ignoring
the specific properties of different modalities, AE will be trained to the
form that some hidden nodes are strongly connected with some
individual modality inputs while weakly connected to other mod-
alities. As such, the correlations between different modalities cannot
be well learned and represented. Therefore, to overcome this limita-
tion, we employed the structured regularization (SR) [17,18], which
allows the network to distinguish different modalities for individual
treatment. Also the modality-specific sparsity and modality-specific
density of the features from different modalities are enforced and
further learned. SR is employed in the layer with multimodal inputs of
Fig. 1 to distinguish and learn the representation from different
multimodal inputs.

2.1.2. Structured regularization (SR)
As aforementioned, the SR function is employed for AE with

multimodal inputs inspired by [17,18]. Suppose Sr;i as an K � N
modality binary matrix, where K denotes the numbers of modalities
and N indicates the number of units in corresponding modality. For
SR, each modality will be used as a regularization group separately
for each hidden unit, applied in a manner similar to the group reg-
ularization, compared with the traditional regularization that treats
each input unit equally and ignores the relationship and correlation
between different modalities. SR is defined as

SRðW ½1�Þ ¼
XM
j ¼ 1

XK
k ¼ 1

XN
i ¼ 1

Sr;i j ðW ½1�
i;j ÞP j

 !1=p

ð8Þ

where M denotes the total number of hidden units. K is the total
number of the modalities. N indicates the total number of input units
in each modality. The regularization can be viewed as the summation
of the corresponding Minkowski distance. For pZ1, the Minkowski
distance is a metric as a result of the Minkowski inequality. When
po1, the Minkowski distance violates the triangle inequality. In the
limiting case of p reaching infinity, the regularizationwill be changed
to the summation of Chebyshev distance:

SRðW ½1�Þ ¼
XM
j ¼ 1

XK
k ¼ 1

max
i

ðSk;i jW ½1�
i;j j Þ

� �
ð9Þ

which only penalizes the maximum weight from each input unit
to each hidden unit. In order to prevent over-constraining, the

regularization function is modified to penalize nonzero weight
maxima for each modality for each hidden unit without addi-
tional penalty for larger values of these maxima. The regulariza-
tion function in Eq. (9) are further modified as

SRðW ½1�Þ ¼
XM
j ¼ 1

XK
k ¼ 1

B max
i

ðSk;i jW ½1�
i;j j Þ

� �
40

� �
ð10Þ

where B indicates a Boolean function that takes a value of 1 if its
variable is true, and 0 otherwise. The regularization function in
Eq. (10) performs a direct penalty on the number of modalities
used for each weight, without further constraining the weights of
modes with nonzero maxima.

By integrating SR into the multimodal AE training as in [17], the
objective function can be further represented as

W ½1�n ¼ arg min
W ½1�

Xn½1�

i ¼ 1

‖z½1�i �x½1�i ‖22þα � SRðW ½1�Þ ð11Þ

where

z½1�i ¼
Xk½1�
j ¼ 1

μ½1�
j W ½1�

i;j ð12Þ

where μ½1�
j is the hidden node generated by the encoder of the

multimodal AE, while z½1�i is signal reconstructed by the decoder
from μ½1�

j � n½1� is the number of the input nodes including all the
modality features, and k½1� is the number of the hidden nodes of
the multimodal AE. W ½1�

i;j is the corresponding weights of the
multimodal AE by introducing SR. α is the parameter to balance
the error and the regularization terms, which is experimentally set
to 3� e�4 in practice.

Fig. 2(b) illustrates the structure of AE with SR to demonstrate
how SR with AE works for the multimodal inputs. By integrating
SR into AE, the connection between the visual input layer and the
first hidden layer is learned. As Eq. (10) shows, to minimize
SRðW ½1�Þ, the zero number of W ½1�

i;j should be as large as possible.
As such, only some effective nodes of the visual input layer get
connected with those of the first hidden layer. The comparison of
the structures of AE with and without SR demonstrates that the
multimodal network could distinguish different modalities and
learn the correlations between them automatically.

2.2. Multimodal FER

Based on the learning architecture in previous section, we
propose a simple network for FER. A softmax layer is added on
top of the multimodal learning architecture, which takes the lea-
rned joint representation as inputs and outputs the classification
results for each facial expression. For each expression, the softmax
layer will determinewhether the given inputs, including the texture
and landmark modalities, will result in the specific expression or
not. Consequently, the number of output nodes in the classification
layer (top layer) is two. We can employ the introduced network
including SR in the multimodal AE to build the network. The depth
of the network depends on the problem and the number of training
samples. As aforementioned, insufficient training samples will incur
overfitting with high probabilities, for the specific FER case, due to
the constraint of the training sample number, only one hidden layer
is employed, of which the network structure is I�H�C. Fig. 3
shows the structure of our network succinctly. Take the experiment
conducted on the CKþ database as an example, C is defined as two
to distinguish whether the inputs is the latent facial expression we
aim to recognize. I is defined as the size of the data from all the
multimodal inputs, which is set as 4040 in this paper. H denotes the
size of the hidden layer nodes. As facial expressions affect the eyes
and mouth significantly in each frame, the patches covering eyes
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and mouth are extracted and resized into 16�16 and 16�10,
respectively. Afterwards, these corresponding patches will be con-
catenated as individual vectors, respectively. Supposing that F is the
number of frames imported to the network, the size of eye and
mouth modalities become 256� F and 160� F by temporally
concatenating the modality vector from each frame. Furthermore,
the displacements of the landmarks provide more persuasive rep-
resentation than static coordinates. Besides, we suppose that fea-
tures in different directions contribute differently to FER. As a result,
the displacements of the landmarks in X and Y directions are
separated as different modalities. As there are 68 marked face key
points in every frame, temporally concatenating the landmark disp-
lacement results in a vector with size of 68� F for each direction. By
considering the texture and landmark modalities together, the
vector size is 4040, with F equals to 5, which is fed into the network
for further training. The output of each hidden nodes is generated
by a sigmoid function σðaÞ ¼ 1=ð1þexpð�aÞÞ of the weighted input:

h½1�j ¼ σ
XI
i ¼ 1

xiW
½1�
i;j

 !
ð13Þ

pðojx;ΘÞ ¼ σ
XH
i ¼ 1

h½1�i W ½2�
i

 !
ð14Þ

where o denotes the output nodes which indicate whether the
expression exists or not, and Θ indicates all the parameters in the
network, specifically W ½1� and W ½2�.

The object of the learning network is to realize the non-linear
mapping function for the FER. The inference can be realized by the
following function:

ô ¼ arg max
o

pðojx;ΘÞ ð15Þ

As mentioned before, each facial expression will be treated
separately, for each of which we construct a network for the cla-
ssification. Consequently, Eq. (15) will help distinguish whether
the multimodal input are the facial expression that we aim to
recognize.

In order to make the inference, we need to obtain the para-
meters of the constructed network, specifically the parameters of
the two layers, respectively. For the parameters W ½1� in the multi-
modal layer, AE is first pretrained to obtain the initialized para-
meters. Specifically, the parameters of multimodal layer are firstly

pretrained, which simply learns features from unlabeled data
automatically aiming to transform inputs into outputs with the
least possible amount of distortion. With the process of pre-tra-
ining, the constructed network can effectively avoid the risk of
trapping in poor local optima. After the pre-training process, the
fine-tuning process needs to be further performed to make the
network more suitable for FER. Thereby, a log-likelihood function
is employed as the object function for further training the para-
meters W ½2� in the softmax layers and fine-tuning the parameters
W ½1� in the multimodal layer:

Θn ¼ arg max
Θ

X2
t ¼ 1

log PðL̂ ¼ Ljx;ΘÞ�βSRðW ½1�Þ ð16Þ

where L represents the label of the inputs and L̂ represents the
outputs of the network. For the parameter training, traditional back-
prorogation (BP) [26] is employed to fine-tune parameters of the
constructed deep network. This algorithm is first proposed by
Rumelhart and McCelland, the essence of which is to minimize the
mean squared error between actual output and desired output based
on gradient descent. BP algorithm is especially powerful because it
can extract regular knowledge from input data and memory on the
weights in the network automatically [17]. Simultaneously, it can
improve generalization performance of the learning system, which is
fabulous when used in FER.

Algorithm 1. Multimodal learning for facial expression recognition.

TRAINING:
Input: fXtrain; Ltraing
Output: Θ; L̂train
1: Initialize W ½1� and W ½2� randomly;
2: Pretraining: W ½1� is pretrained based on

W ½1�n ¼ arg minW ½1�
Pn½1�

i ¼ 1 ‖z
½1�
i �x½1�i j22þα � SRðW ½1�Þ to learn

the connections between the visual input layer and the
contributions of different modalities to the hidden nodes on
the benefit of SR;

3: Finetuning: Θ is updated according to

Θn ¼ arg maxΘ
P2

t ¼ 1 log PðL̂ ¼ Ljx;ΘÞ�βSRðW ½1�Þ to
strengthen the recognition capability of the network;

4: Record Θ for the multimodal learning network.

TESTING:
Input: Θ, Xtest

Output: L̂test
1: Generate the output class labels L̂test of Xtest based on Θ

according to Eqs. (13) and (14);
2: Output the labels of facial expressions L̂test .

Furthermore, in order to prevent over-fitting in training neural
network, drop-out is introduced. Typically the outputs of neurons
are set to zero with a probability of p in the training stage and
multiplied with 1�p in the test stage. By randomly masking out
the neurons, dropout is an efficient approximation of training
many different networks with shared weights. In our experiments,
we applied the dropout to all the layers and the probability is set
as p¼0.2.

We summarize our proposed multimodal learning for FER as in
Algorithm 1. Xtrain is the training sample which contains both
textures and landmarks of facial expression. And Ltrain denotes its
corresponding labels. Based on the training samples, the para-
meters Θ of the multimodal learning network, specifically W ½1�

and W ½2� are trained and learned. For testing, when imported the

Left-eye patch Right-eye patch Mouth patch X-displacement Y-displacement

100 units

2 units

Fig. 3. The structure of the network.
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testing sample Xtest to the trained network, the output class label
L̂test is generated based on the learned parameters Θ.

3. Experimental results

In order to evaluate the effectiveness of the proposed method,
Cohn–Kanade Extended Dataset (CKþ) [15] and the natural visible
and infrared facial expression (NVIE) database [30] are employed
for experimental results. Firstly, the detailed information of the
database are introduced. Afterwards, we will present how to pro-
cess the input data to obtain the multimodal inputs for the
proposed multimodal FER, including training and testing. Finally,
experimental results are provided to demonstrate the effective-
ness of the proposed multimodal method, as well as the perfor-
mance comparison of the multimodal inputs and unimodal input.

3.1. Database

The Cohn–Kanade Extended Dataset (CKþ) [15] is built by
Kanade et al., which is developed for automated facial analysis and
has been widely used for testing the performance of FER algorithms.
In this dataset, the facial behaviors of 210 adults are recorded using
two hardware synchronized Panasonic AG-7500 cameras and parti-
cipants are 18–50 years of age. There are posed and non-posed
expressions concurrently in the dataset. The facial expression
dynamics of sequences in the CKþ dataset starts from neutral
expression and ends on the apex of the expression. Since we need
data with labels for training and testing, only posed expressions with
explicit labels are selected. There are totally 123 subjects with 593
frontal image sequences in our input data, where 327 sequences are
annotated with the emotion labels (1¼anger, 2¼contempt, 3¼
disgust, 4¼fear, 5¼happy, 6¼sad and 7¼surprise). Each frame in
the sequence is digitized into either 640�490 or 640�480 pixel
arrays with 8-bit gray scale or 24-bit color values, and 68 face key
points are detected by AAM [24] for each frame, which are regarded
as the facial landmark. In this paper, six emotions are selected for FER
testing and the inventory of each expression used in this experiment
is shown in Table 1. When imported to the recognition system, the

samples of the certain expression are set as positive with the rest as
negative. Obviously, the positive samples of expression “Fear” and
“Sad” are less than others. As the luminance information is more
important for FER, the color frame is converted into gray ones to only
preserve the luminance components before further processing.

The natural visible and infrared facial expression (NVIE) data-
base is newly developed for expression analysis. This database
includes two sub-databases, that are posed database consisting of
apex images and spontaneous database containing images and
landmarks from onset to apex images. As the posed database with
only apex frame could not meet our requirement, we did not take
the posed one into consideration. For the spontaneous database, the
facial images were recorded by DZ-GX25M camera with resolution
704�480 under three different conditions: illumination from left,
front and right. There are 105 subjects under front illumination, 111
subjects under left illumination and 112 subjects under right
illumination, respectively. A total of 28 landmarks are located and
tracked on each image. Different from the CKþ database, the labels
of samples in the NVIE database are assigned values from 0 to 2 to
every expression. The larger the value, the more likely the sample
belongs to that expression.

3.2. Data processing

As aforementioned, the databases contain both texture and
landmark modalities for each facial image. These two modalities
reflect different properties of the facial expression, which should
be considered together for FER. As introduced in [13], the pre-
processing of the data is critical to learning process. In the foll-
owing, the texture and landmark modalities of the facial image
will be first processed, respectively, before being fed into the mul-
timodal FER system, as illustrated in Fig. 4.

3.2.1. Texture modality
The definition of facial expression is based on the action unit (AU),

which is relevant to the brows, eyes, bridge of the nose and mouth. As
a result, the image patches are extracted around eyes and mouth from
one frame, where the patches around eyes should cover the brows as
well as bridge of the nose. These extracted image patches contain the
most pivotal facial features related to expressions. As Fig. 5 shows, the
green points are landmarks on the face, while the red border are the
trim lines. We clip the patches according to the landmarks on the
bridge and the tip of the nose. In order to cover the whole subject, for
the CKþ database, the size of the eye and mouth patches are defined
as 100�100 and 160�100, respectively. After that, these patches are
further downsampled by ten times for dimension reduction, which can

Table 1
The number of expressions.

Emotion Anger Disgust Fear Happy Sad Surprise
Number 45 59 25 69 28 83

Result Or

Anger

Not

Patch Cropping

Movements
Calculating

Modality-specific
Normalization

Temporal
Cascading

Multimodal
Learning

Fig. 4. The structure of our approach.
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further reduce the parameter number and the computational complex-
ity for training and testing. Finally, the image patch is concatenated
into row vector before further normalization. The resulting vector size
of the eye and mouth is 16�16¼256 and 16�10¼160, respectively.
For the NVIE database, we clip 40�40 eye-patch and 40�60 mouth-
patch. Afterwards, the patches are further downsampled to 20�20
and 20�30. After concatenating them together, the final vector size is
256�2þ160¼672 for the CKþ database and 400�2þ600¼1400
for the NVIE database, which represents the input of the textural
modality for one frame.

3.2.2. Landmark modality
The generation of facial expression is a dynamic process. There-

fore, for the landmark modality, movements of the landmarks bet-
ween the current frame and the previous one in video flow provide
more insightful representation of facial expression than static land-
marks. Additionally, we are not sure whether the head positions in
the images from different people remain unchanged or not. As a
result, we calculate the different value between current frame and
previous one as the movements of landmarks. Assuming that Xi

tþ1
and Yi

tþ1 are the ith X and Y coordinates in the current frame,
respectively, Xit and Yit are the ith X and Y coordinates in the previous
frame, the landmark movements can be calculated as

ΔXi
t ¼ Xi

tþ1�Xi
t

ΔYi
t ¼ Yi

tþ1�Yi
t ð17Þ

Note that the first frame of the input sequence has no previous
frame for reference, which only serves as reference and is excluded
from the landmark modality for FER. After obtaining the movements
from each frame, the movements are concatenated as the input of
the landmark modality, which results in the size of the landmark
input modality as 68�2¼136 for the CKþ database and 28�2¼56
for the NVIE database.

3.2.3. Modality-specific normalization
As the extracted vectors are from two different modalities, a

normalization method under the incentive of [4,27] is employed to
make the network robust to illumination and contrast variations. In
addition, the normalization process is vital to the network tra-
ining. The procedure of normalization could be summarized as
follows. Firstly, the mean value of the texture and landmark from
one frame is obtained. Then the difference between real and the
mean value is calculated to remove the individual difference for
texture and landmark modalities. Finally, the standard deviation is
divided to make the data to be normally distributed. Supposing Pj as
the jth pixel value of stretched patch (texture modality) or the jth
coordinate of landmark modality in the row vector, J as the number
of pixels in one patch or the number of landmark modality in one
frame, the normalized result P̂ j of the input data is obtained by

μ¼
PJ

j ¼ 1 Pj

J

σ ¼
XJ
j ¼ 1

½Pj�μ�2 ð18Þ

P̂ j ¼
Pj�μ
σþC

where C is a constant avoiding the numerator be divided by zero.
The normalization makes the network robust to illumination and
contrast variation as demonstrated by [20]. Fig. 6 shows the inte-
nsity of input data before and after normalization in histogram. It
can be observed that the values of the input data before normal-
ization are mostly around 1. After pre-processing, the input data
subjects to normal distribution approximately, which tends to be
more suitable for network training [29].

Fig. 5. The schematic diagram of eye and mouth patch extraction. (For interpreta-
tion of the references to color in this figure, the reader is referred to the web
version of this paper.)

Fig. 6. Histogram of intensity of input data before and after normalization. (a) Before Normalization (b) After Normalization.
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3.2.4. Temporal cascading
The importance of facial dynamics in FER has been established in

many vision experiments [16,19]. As stated in [5], facial dynamics is
about motion among frames, rather than static patterns. Additionally,
the inputs fed to the network are a row vector conventionally, which
makes that the cascading the multi-frame in the same video together
becomes an essential work. After integrating the texture and land-
mark modalities from different frames in the same seq-
uence as one row, the multimodal input data for the network is
prepared. The corresponding input data and labels can be obtained
for further training. As long as the training is finished, the feedfor-
ward network with learned parameters can be employed to recog-
nize facial expressions from texture and landmark modalities.

3.3. Multimodal learning FER results

The experimental settings are as follows. For each facial
expression in the two databases, 2/3 of the whole samples are
randomly selected to form the training set, with the rest as testing
samples. The network was trained and tested for five times, with
the average experimental results as the network's performance.
The receiver operating characteristic (ROC) curves are employed as
the criterion to evaluate the performance, which is more general
and reliable than recognition accuracy [6] for evaluating the FER
system. The X-coordinate of the ROC curve is FP=N, where N rep-
resents the number of negative samples and FP (false positive) as
the number of samples incorrectly labeled as belonging to the
positive class. Analogically, the Y-coordinate is TP=P, where P
indicates the positive samples and TP (true positive) presents the
number of samples correctly labeled as belonging to P. To draw a
complete ROC curve, the threshold value ranges from 0 to 1 with
0.01 as the step size to obtain the curve. As aforementioned, there
are two units in the output layer. The value of only one unit is
employed for ROC curve generation. If the value is larger than the
threshold, the unit is set to 1, and 0 otherwise. The area under the
ROC curve (AUC) is digital representation of the performance.
Obviously, the larger the AUC, the better is the classifier.

3.3.1. Comparison to prior study on FER
In order to efficiently assess the performance of our algorithm, we

compare it with existing state-of-the-arts FER algorithms. We first
use the first six frames of every labeled sequence as inputs. As the
first frame only serves as reference, only the texture and landmark
modalities from the rest five frames are extracted for training and
testing. The performance is compared with the recent work done by
Lorincz et al. [2], which achieved start-of-the-art performance. The
corresponding results are illustrated in Table 2. It is noteworthy here
that the experimental results from [2] are employed for performance
comparison. Fig. 7 shows the ROC curves of six expressions.

Obviously, the performance of algorithms in [3,5] is inferior to
other methods. Although the dynamic characteristics of facial exp-
ression have been considered and a spatiotemporal GME filter is
employed, the texture modality is only adopted for FER in [5]. Long

et al. [3] proved that learning spatiotemporal filters with ICA works
better than spatiotemporal Gabor features. Yet the final result relies
largely on the handcrafted features. Jeni et al. [4] and Lorincz et al. [2]
yield satisfactory results. Jeni et al. [4] removed personal mean
texture manually. Only selected portions of the face image are
employed, where the overall change of the face is neglected. Con-
versely, Lorincz et al. [2] used only the landmarks and neglected the
texture one, with some important details of face missing.

With the first six frames as inputs, our algorithm produced
better results than the existing algorithms. Since texture describes
the face details and landmark outlines the shapes and contours,
the proposed method integrates them together to exploit the com-
plementarity of them. However, through the observation of the
CKþ database, we find that the expression process is incomplete
in the first six frames. In order to improve the recognition perf-
ormance, we also take six frames which contain the first, the mid-
dle four and the last frame of sequence as inputs. The experi-
mental results displayed in Table 3 demonstrate that the sub-
stantial change of expression reduce the recognition difficulty and
can generate better recognition results.

Furthermore, Fig. 7 indicates that the performance of recogni-
tion on emotions “Fear” and “Sad” is inferior than the others,
because AUC under the ROC curves of these two expression is less.
The reason may be attributed to the extreme lack of training
samples of these two emotions referring to Table 1. Hence. the
equilibrium, correctness and scale of the dataset are crucial for
training a successful neural network.

3.3.2. Unimodality vs. multimodality
The core idea of this paper is to address the integration of the

texture and landmark modalities for FER. Therefore, it is necessary to
compare the performance with unimodality and multimodality,
respectively. Table 4 shows the corresponding experimental results,
where the texture and landmark modalities are extracted from the
integral multimodality dataset. The average performance of recogni-
tion results prove that multimodality is more reliable than unim-
odality for FER. It can be observed that the texture modality alone as
the input data performs worse than the landmark modality. This is
probably because the texture modality only covers portions of the
face while landmarks can outline the shape and contour of the
whole face. Moreover, the detailed change of face information that
presented by texture and the global change of face represented by
landmark can be viewed as complementary to each other. Conse-
quently, when combined together, they yield the best FER results.

However, it seems that the recognition of “Happy” is improved
by integrating both the texture and landmark modalities. It is easy
to recognize “Happy” in this dataset. The texture and landmark
modality alone already performs well. However, by integrating
them together, the network will be much larger, which requires
more training data. In this case, lack of training data can somewhat
lead to overfitting, which results in the performance degradation.

Another issue is that the modality number may affect the FER
performance. As shown in Table 5, FER is first performed with two
modalities as inputs, where the left eye, right eye, and mouth are
combined together as the texture modality, and the X-displacement
and Y-displacement are combined together as landmark modality.
The performance result is illustrated in the second row of Table 5.
Furthermore, these components can be treated separately, which are
regarded as five different modalities and fed into the recognition
network. The corresponding results are illustrated in the third row
of Table 5. It can be observed that treating these five modalities
separately will help produce better results. Moreover, it can be con-
cluded that our proposed multimodal learning network is scalable to
different numbers of modalities. As such, by introducing more rel-
ated modalities, the FER results will be improved further.

Table 2
Comparison to prior study on FER (first six frames).

Method Angary Disgust Fear Happy Sad Surprise Average

Wu [5] 0.829 0.677 0.667 0.877 0.784 0.879 0.786
Long [3] 0.774 0.711 0.692 0.894 0.848 0.891 0.802
Jeni [4] 0.817 0.908 0.774 0.938 0.865 0.886 0.865
DTW [2] 0.873 0.893 0.793 0.892 0.843 0.909 0.867
GA [2] 0.921 0.905 0.887 0.910 0.871 0.930 0.904
Proposed algorithm 0.948 0.929 0.890 0.916 0.903 0.930 0.919
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3.3.3. Comparison of the algorithms with and without pretraining
Table 6 displays the comparison of algorithms with and without

pretraining. It is demonstrated that, once pretraining is added to the
network, the performance is improved by six percent. BP is based on

local gradient descent, and starts usually at some random initial
points, which may cause poor local optima. If pretraining is emp-
loyed to initialize the parameters, the network could be fine-tuned
on the pretrained parameters. In this case, the parameters of the

Fig. 7. ROC curves of six different emotions.
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network will avoid the risk of getting stuck at local optima. Table 6
illustrates the FER results with and without pretraining, which
demonstrate the necessity of pretraining.

3.3.4. One hidden layer vs. multiple hidden layers
The number of the hidden layers H and the number of the units

U in each layer are the hyper-parameters of the network, which is
very important for the network performance. In order to find the
best parameters H and U, we test various combinations of them on
the facial expression “Anger”. Fig. 8(a) reveals the regularity as
follows. Once the number of hidden layer is set to more than one,
50 units tend to give the best performance. More units will result
in more parameters to be learned. However, the training samples
cannot afford a network with too many parameters, which map
the inputs from visible layer to hidden layer. On the other hand, if
the number of hidden units is too small, it is hard to represent the
4040 input nodes. Our intention is to build a deep network to
learn the nonlinear property of the texture and landmark mod-
alities for FER. However, the lack of training data cannot afford a
deep architecture for FER. It can be observed that Fig. 8(b) shows
the network with one hidden layer and 100 hidden units
performed the best. As the number of hidden layer increased,
the performance on FER will be degraded. Hence, as illustrated in
Fig. 3, the settings of one hidden layer and 100 hidden units are
adopted for FER in this paper.

3.3.5. The proposed method vs. other classifiers
As aforementioned, we integrate texture and landmark mod-

alities together as the input and use multimodal learning method
to perform the FER. To demonstrate that the proposed method
indeed performs better than other algorithms, we compare the
method to other two classifiers, specifically SVM and KNN. We first
use the same row vector with 4040 units as the input to the
classifiers. Experimental results demonstrate that SVM performs

better than KNN. However, both results are not satisfactory. To
further prove that AE with SR can not only integrate texture and
landmark together but also automatically extract the meaningful
features for FER, we import the learned feature of the hidden layer
into SVM and KNN, respectively. As shown in Table 7, after
performing the multimodal feature learning, the performances of
both SVM and KNN are significantly improved. We can conclude
that the multimodal learning can effectively learn the representa-
tion from the multimodal inputs.

3.3.6. Experiments on spontaneous database
There are great differences between posed and spontaneous

facial expression. The former is acted intentionally, while the latter
is displayed unconsciously by subjects. The posed expressions are
captured by asking subjects to perform different expressions in
front of a camera, which are usually exaggerated. The spontaneous
ones are more natural and different from the posed one both in
appearance and timing. The recognition of spontaneous seems to
have more profound theoretical and practical significances. How-
ever, its expression recognition is thus harder. In this experiment,
“Happy”, “Fear” and “Disgust” are selected as samples to conduct
the three-class classification. Fig. 9 illustrates the comparison
results of the proposed method and He's method on the NVIE
database. For “Disgust”, “Fear” and “Happy”, the recognition
accuracy is measured by the ratio of the correctly recognized
specific expression over the total number of specific expression
samples. For “Total accuracy”, the recognition accuracy is calcu-
lated by the ratio of all correctly recognized samples over all the
total number of the samples. It can be observed that for the
comparison of the spontaneous FER, the proposed method per-
forms better than He's method. For “Total accuracy”, 10% accuracy
improvement is obtained by our proposed multimodal learning
method.

4. Conclusion

In this paper, we presented a multimodal FER algorithm, where
the texture and landmark are integrated together to boost the FER
performance. In order to avoid handcrafted features, which are
cumbersome and time-consuming, the joint representation for
FER is learned from the built neural network. By incorporating SR
into AE, the proposed network can not only distinguish each
modality but also learn the correlation and interaction between
the texture and landmark modalities, which are complementary to
each other. Various experimental results and comparisons have
demonstrated the superiority of the proposed method over the
existing ones.

Table 3
Comparison to prior study on FER (First–Last).

Method Anger Disgust Fear Happy Sad Surprise Average

Yang [6] 0.973 0.941 0.916 0.991 0.978 0.998 0.966
Long [3] 0.933 0.988 0.964 0.993 0.991 0.999 0.978
Jeni [4] 0.989 0.998 0.977 0.998 0.994 0.994 0.992
DTW [2] 0.991 0.994 0.987 0.999 0.995 0.996 0.994
GA [2] 0.986 0.993 0.986 1.000 0.984 0.997 0.991
Proposed algorithm 0.995 0.999 0.967 0.999 1.000 1.000 0.993

Table 4
Comparison of the algorithms with unimodality and multimodality.

Inputs Anger Disgust Fear Happy Sad Surprise Average

Texture 0.770 0.790 0.584 0.921 0.577 0.877 0.753
Landmark 0.906 0.893 0.803 0.924 0.703 0.910 0.856
Multimodality 0.948 0.929 0.890 0.916 0.903 0.930 0.919

Table 5
Comparison of the algorithms with different numbers of modalities.

Inputs Anger Disgust Fear Happy Sad Surprise Average

(Left-eye þ Right-eye þ mouth) þ (X-displacement þ Y-displacement) 0.923 0.890 0.746 0.923 0.870 0.927 0.879
Left-eye þ Right-eye þ mouth þ X-displacement þ Y-displacement 0.948 0.929 0.890 0.916 0.903 0.930 0.919

Table 6
Comparison of the algorithms with and without AE.

Method Anger Disgust Fear Happy Sad Surprise Average

BP 0.907 0.915 0.708 0.909 0.764 0.895 0.850
BP þ pretraining 0.948 0.929 0.890 0.916 0.903 0.930 0.919
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