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ABSTRACT

Visual quality assessment plays a crucial role in many vision-
related signal processing applications. In the literature, more
efforts have been spent on spatial visual quality measure. Al-
though a large number of video quality metrics have been
proposed, the methods to use temporal information for qual-
ity assessment are less diversified. In this paper, we propose
a novel method to measure the temporal impairments. The
proposed method can be incorporated into any image quality
metric to extend it into a video quality metric. Moreover, it is
easy to apply the proposed method in video coding system to
incorporate with MSE for rate-distortion optimization.

Index Terms— video quality assessment, spatial visual
quality measure, temporal inconsistency measure.

1. INTRODUCTION

A reliable objective Video Quality Metric (VQM) will benefit
the video coding community at least in two ways. First, it can
substitute for the cumbersome, slow and expensive subjective
testing for the performance evaluation of different video cod-
ing approaches. Second, different from the subjective testing
which must work in an off-line manner, the objective VQM
can be embedded into video codec to guide the rate-distortion
optimization.

Simple mathematical error measures, such as Mean
Square Error (MSE) or Peak Signal-to-Noise Ratio (PSNR),
are widely used in video coding schemes to assess the visual
quality of the encoded frames. However, it has been well
acknowledged that these pixel-based difference measures do
not correlate well with the perception of the human observers,
because they operate on a pixel-by-pixel basis without consid-
ering the characteristics of the Human Visual System (HVS).
Therefore, during the decades great efforts have been made
towards accurate visual quality metrics, and progresses have
been reported. However, although these advanced metrics
can outperform MSE/PSNR in matching the subjective rat-
ings, their complexity makes them impractical for replacing
MSE/PSNR in the video coding system.

In this paper, we propose a Temporal Inconsistency Mea-
sure (TIM) for video quality assessment. Different from a
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stand-alone VQM, the proposed TIM can be incorporated
into any Image Quality Metric (IQM) for its extension into
a VQM. As we show in the sequel, it is very convenient to
apply TIM in the video coding system to enhance the MSE
for video quality assessment. The rest of this paper is orga-
nized as follows. Section 2 briefly reviews the related works,
especially discussing the existing methods of using tempo-
ral information for video quality assessment. In Section
3, we propose TIM, and illustrate the cooperation of MSE
and TIM (MSE TIM) in measuring video quality. Section 4
gives the experimental results showing the performance of
the MSE TIM in matching the subjective ratings. Section 5
contains the concluding remarks.

2. RELATED WORKS

Many image quality metrics (IQM) can be generalized as:

F =

∑M
i=1 Qi

M
(1)

where Qi is the predicted quality value given to the local im-
age patch indexed by i. Actually, (1) only defines the com-
mon spatial pooling method, whose objective is to calculate a
single quality prediction for the whole image, given the qual-
ity score Qi for each local image patch. The essence of each
IQM lies in its particular definition of Qi. For example, MSE
quantifies the quality/distortion of an 8× 8 image block by:

MSE =

∑64
k=1(xk − yk)2

64
(2)

where x and y are the reference block and the distorted block,
respectively; k is the pixel index. Limited by the paper length,
please refer to [1] etc. for a comprehensive review on IQM.

Video sequences consist of 2-D frames. Hence the sim-
plest way to extend IQM into VQM is by using the following
temporal pooling equation:

S =

∑N
n=1 Fn

N
(3)

where n is the frame index; N is the total number of the
frames; Fn is the quality prediction for the nth frame; S is the
quality prediction for the video sequence. Eq. (3) cannot cope
well with special temporal artifacts, e.g., jerky or jitter mo-
tions etc., yet it has been acknowledged that (3) can properly
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Fig. 1. Spatial and temporal impairments.

handle the video coding artifacts, and it is a de facto method
adopted to measure the visual quality of encoded video se-
quence, possibly ever since the advent of the video coding
technique. Nevertheless, it is apparent that (3) does not ex-
ploit any temporal information which by proper use will ben-
efit the visual quality assessment.

In the existing literature of video quality assessment,
many metrics utilized temporal information to advance their
prediction. For example, classical HVS-model based metrics
[2] simulated the mechanism of the HVS to separate the visual
signals into two temporal channels, one transient (bandpass)
channel and one sustained (lowpass) channel. Both chan-
nels were further decomposed into multiple oriented spatial
frequency sub-channels, each of which would be weighted
according to the spatio-temporal contrast sensitivity function
of the HVS. Metrics in [3] utilized rudimentary temporal
information simply by differencing adjacent frames (with-
out motion compensation). Bigger inter-frame difference
leads to larger temporal masking effect. In Video Quality
Model (VQM) [4], the absolute difference between adjacent
frames was used to measure the moving-edge artifacts. Also
in VQM, a varied of temporal pooling functions were em-
ployed, some of which took into consideration the temporal
distribution of the impairments, e.g., by using the 90% most
seriously distorted frames for the quality measure. In [5],
smaller weightings were given to the large motion frames,
since the authors found that their metric performs less sta-
ble when very large global motion occurs. The motion level
of the frame was determined by the average motion vector
length. The MOVIE index [6] utilized Gabor filters to de-
compose both reference and distorted video sequences into
spatio-temporal 3-D frequency subbands. Spatial MOVIE
index accumulated the differences within each subband to
assess the spatial impairments; while temporal MOVIE index
assigned different weightings to different subband differences
for temporal impairment measure. The weighting value for
each subband is inversely proportional to the distance be-
tween the subband and a spectral plane, the location of which
is determined by the values of the spatial frequencies and the
motion vectors. It is easy to see that the above-mentioned
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methods of utilizing temporal/motion information for visual
quality measure are either too inconvenient to be incorporated
into video coding or too simple to take full advantage of its
usefulness.

3. TEMPORAL INCONSISTENCY MEASURE

In Fig. 1, the eclipses represent the same object in different
video frames. Due to the spatial impairments, A in the nth

frame of the original video (On) appears to be different from
B in nth frame of the distorted video (Dn); while due to the
temporal impairments, B in Dn appears to be different from
B′ in Dn−1, i.e., the previous frame of Dn. In this paper, the
term temporal inconsistency is used to describe the visual dis-
parity of the same object in adjacent distorted frames. To the
best of our knowledge, existing VQMs only used the tempo-
ral information, e.g., the differences of adjacent frames, mo-
tion vector length etc., to adjust the spatial impairments, but
none of them attempt to measure the temporal inconsistency
directly. We propose a Temporal Inconsistency Measure, ab-
breviated as TIM, in this work. The implementation issues of
TIM and its cooperation with MSE are discussed in detail in
this section.

3.1. Implementation

The crucial implementation issue of TIM is how to locate the
same object in adjacent frames. To this end, we perform
motion estimation on the original video sequence, and the
obtained motion vectors are used to register frame On−1 to
On. The registration result is the so-called motion compen-
sated frame (a term used in video coding) O′n. Assuming that
the distortions do not cause spatial/temporal shift or scaling
of the object, which is true for many real-world distortions,
the motion vectors derived from the original sequence, which
are taken as the true representation of the motion trajectories
of the objects, can be used for the distorted video to regis-
ter Dn−1 to Dn, generating the motion compensated frame
D′n. Next, by analyzing the differences between Dn and D′n,
which in fact can be treated as spatial impairments and mea-
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Fig. 4. TIM with MSE as the spatial impairment measure.
sured by any IQM, the temporal inconsistency can be quanti-
fied.

As shown in Fig. 3, (a), (c), and (e) are three nth frames,
from an original sequence, a H.264 encoded sequence, and
a Gaussian blurred sequence, respectively. As mentioned
above, we performed motion estimation (block-based full
search) on the original sequence, and the derived motion vec-
tors were used to predict (a), (c), and (e) from their previous
frames. The prediction errors (differences of pixel values be-
tween the current frame and the motion compensated frame)
are shown in Fig. 3 (b), (c) and (d). It can be observed that:
(1) H.264 coded frame has larger prediction error, which
implies larger temporal inconsistency; (2) Gaussian blurred
frame has smaller prediction error. In video coding, the
quality measure in use does not consider the temporal im-
pairments at all. Therefore, video coding will cause large
temporal artifacts especially when the compression ratio is
high. On the other hand, in the Gaussian blurred sequence,
each frame was filtered by the same Gaussian kernel, which
intuitively will cause little temporal inconsistency. This is
consistent with our observation in Fig. 3.

Perfect registration for the original sequence is impossi-
ble, because of, e.g., the restrictions imposed by the motion
estimation algorithm, the changes of lighting condition, or the
emergences of the occluded regions, and so on. Therefore,
there will exist differences between A and A′, as shown in
Fig. 2 and Fig. 3 (b). We term it inherent difference. To
measure the temporal inconsistency, we need to subtract the
inherent differences from the total differences between B and
B′. And because of the coexistence of the temporal incon-
sistency artifacts and the inherent differences, they mask each
other visually. This masking effect should be considered by
the quality metric.

3.2. MSE TIM
Eq. (4) and Fig. 4 show how to incorporate MSE with TIM,
where i is the index of an 8× 8 block; MSE 1i measures its
spatial impairments; max(MSE 2i−K×MSE 3i, 0) mea-
sures its temporal impairments; K is a constant value which is
larger than 1 to take account of the masking effect mentioned



MSE TIM =

∑M
i=1(ω ×MSE 1i + (1− ω)×max(MSE 2i −K ×MSE 3i, 0))

M
(4)

Table 1. Performance of the proposed video quality metric MSE TIM.
ω = 1 ω = 0.8 ω = 0.6 ω = 0.4 ω = 0.2 ω = 0

LCC 0.457 0.467 0.481 0.504 0.578 0.651
LIVE SROCC 0.420 0.433 0.448 0.459 0.523 0.625

(coding) RMSE 9.142 9.092 9.014 8.877 8.384 7.804
LCC 0.570 0.603 0.614 0.632 0.640 0.675

LIVE SROCC 0.552 0.559 0.574 0.591 0.630 0.667
(fullset) RMSE 9.016 8.756 8.665 8.505 8.427 8.097

above. The weighting value ω is to balance the importance
of the spatial impairment measure and temporal inconsistency
measure in the final quality decision. The experimental results
of this metric MSE TIM will be given in the next section.

To substitute MSE TIM for MSE in video coding, we
need to find the true motion vectors for each frame of the
reference video. The rest of the computation payload will
be low, since essentially the formulation of MSE (hereby its
computational simplicity) is kept in MSE TIM.

4. RESULTS

We tested MSE TIM’s performance on subjective video
database LIVE [7], which includes 150 distorted videos
generated from ten 768 × 432 reference videos with four
different distortion types: H.264 coding, MPEG-2 coding,
wireless transmission distortion, and IP transmission distor-
tion. The so-called subjective video database provides each
of its distorted video a subjective score to define its visual
quality. These subjective scores are derived from subjective
viewing tests where a large number of human observers par-
ticipated and provided their opinions on the visual quality
of each distorted video. Therefore, these subjective scores
can be used as the ground truths to be compared with the ob-
jective scores given by a metric to evaluate its performance.
After the non-linear mapping1, three objective criteria were
used to measure the correlation between the subjective scores
and the nonlinearly mapped objective scores, which are the
Linear Correlation Coefficient (LCC), the Spearman Rank-
Order Correlation Coefficients (SROCC), and the Root Mean
Squared Error (RMSE). Higher LCC and SROCC values in-
dicate stronger correlation, i.e., better metric performance;
while on the other hand, a smaller RMSE value indicates
better metric performance.

Table 1 shows the performance of MSE TIM which is for-
mulized by (4). We used 8× 8-block-based integer-pixel full
search with the search range [-16, +16] as the motion estima-
tion method; the constant K is experimentally set as 3. In
Table 3, ω = 1 correspond to the original MSE. As ω de-

1Limited by the paper length, for the motivation and implementation of
the non-linear mapping please refer to [6] for reference.

creases, the influence of TIM on the final quality score in-
creases. From the experimental results, it can be concluded
that TIM helps in boosting MSE’s performance on the coding
artifacts and also the fullset of the database. Because of the
tight correlation between the intensity of the spatial impair-
ments and the temporal impairments, even better performance
can be achieved when TIM is used only (ω = 0).

5. CONCLUSION AND FUTURE WORK

We propose a temporal inconsistency measure which can
be used with any IQM to assess video quality. For illustra-
tion, TIM is incorporated into MSE, and the resultant metric
MSE TIM is tested on the subjective video database LIVE.
The experimental results show that TIM can improve MSE’s
performance in matching subjective ratings. Our future work
will focus on investigating the influence of different motion
estimation algorithms on TIM, employing MSE TIM to guide
video coding, and incorporating TIM into the state-of-the-art
IQMs.
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