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Abstract—In this paper, we propose a novel adaptive block-size 
transform (ABT) based just-noticeable difference (JND) model 
for videos. Firstly, the ABT-based spatial JND profile is ex-
tended to spatial-temporal JND model for videos by considering 
temporal contrast sensitivity function (TCSF), eye movement, 
and the motion information of the objects in video sequence. 
Furthermore, a metric named motion characteristics distance 
(MCD) is proposed to depict the motion characteristics similari-
ty between a macroblock and its corresponding sub-blocks. 
Based on the proposed MCD and the obtained spatial image 
content information, a novel balanced strategy is proposed to 
determine which transform size is employed to generate the re-
sulting JND model. Experimental results have demonstrated 
that our proposed scheme could tolerate more distortions while 
preserving better perceptual quality than other JND profiles, 
which means that the proposed model consists well with human 
vision system (HVS). Moreover, for the balanced strategy, expe-
riments have shown that temporal motion characteristics accord 
very well with the spatial image content information, which has 
demonstrated the efficiency of our proposed balanced strategy. 

I. INTRODUCTION  
JND accounts for the smallest detectable difference be-

tween a staring and secondary level of a particular sensory 
stimulus in psychophysics [1], which is also known as the 
difference limen or differential threshold. The JND model can 
be employed for depicting and modeling the property of HVS 
efficiently in many multimedia processing research areas, such 
as perceptual image/video compression [4]-[6], image/video 
perceptual quality evaluation [2] [3] etc. 

Generally, automatic JND model can be determined in the 
image domain [7] [8], or transform domain [6], or even their 
combination [11]. JND model generated in image domain, 
which is also denoted as pixel-based JND, mainly focuses on 
the background luminance adaptation and the spatial contrast 
masking. In [9], Yang et al. deduce the overlapping effect of 
luminance adaptation and spatial contrast masking to refine 
the JND profile in [7]. However, pixel-based JND model has 
not considered the HVS sensitivity for different frequency 
components. Therefore it could not describe the HVS property 
accurately. JND model generated in the transform domain 
named the subband-based JND usually incorporates all the 
major affecting factors, namely, CSF, luminance adaptation, 
and contrast masking. In [4], the DCT JND thresholds are 
developed based on spatial CSF. Then the basic JND model is 
improved by Watson [5] in DCTune model after considering 

contrast masking. More recently, Wei et al. [10] incorporate 
new formulae of luminance adaptation, contrast masking and 
Gamma correction to estimate the JND threshold in DCT do-
main. Moreover, in order to exploit the HVS property over 
different transform sizes, Ma et al. [12] proposed to combine 
ABT together with the DCT-based JND profile for images. In 
addition, in order to generate a JND model for videos, tempor-
al HVS property should be taken into account. An empirical 
function based on the luminance difference between adjacent 
frames is proposed in [7] [9] to model the temporal masking 
property. And Kelly [13] proposed to measure the spatio-
temporal CSF model at a constant retinal velocity, which is 
tuned to a particular spatial frequency. Based on Kelly’s mod-
el, Jia et al. [14] estimated JND for videos by considering spa-
tio-temporal CSF, eye movement. Furthermore, Wei et al. [10] 
take the directionality of the motion into consideration to pro-
duce the resulting temporal modulation factor. 

Recently, ABT has attracted researcher’s attention for de-
veloping the next generation video coding standard. Specifi-
cally, larger block-size based transforms could provide better 
energy compaction and better preservation of details, while 
smaller ones could prevent more ringing artifacts during com-
pression [15]. Also we have shown its potential in exploiting 
HVS property during the development of spatial JND model 
for images [12]. Therefore, ABT based JND model for videos 
is promising, which could be easily applied in many multime-
dia perceptual researches, such as video compression, video 
quality assessment, and so on. 

In this paper, inspired by recent progresses on ABT based 
video coding strategy, a novel ABT based JND profile for vid
eos is proposed. Firstly, temporal HVS property is modeled by
 considering TCSF, eye movement, and the motion informatio
n of the objects in the video sequence. Secondly, a novel balan
ced strategy for adaptively adjusting the temporal motion char
acteristics and the spatial image content is proposed to determi
ne which transform size is employed to yield the resulting JN
D profile. The rest of the paper is organized as follows. In Sect
ion II, the proposed ABT based JND profile for video is introd
uced. Experimental results are shown in Section III. Finally, S
ection IV concludes the paper. 

II. THE PROPOSED ABT BASED JND MODEL FOR VIDEOS  
JND profile for videos in the DCT domain could be deter

mined by considering both spatial HVS property Tspatio and te
mporal modulation factor Ttempo , which could be expressed as: 
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),,,,(),,,(),,,,( jinmkTjinmTjinmkT tempospatio ×= , (1) 
where k denotes the frame index of the video sequence, (m,n) 
is the position of DCT block in the current frame, (i,j) indi-
cates the DCT subband, and T is the final obtained JND thre-
shold for each corresponding frame. Since the spatial ABT 
based JND model for images has been discussed in [12], we 
will focus on the HVS temporal property. 

A.  Temporal Modulation Factor 
Based on the temporal contrast sensitivity experiment, 

Robson [16] gave the TCSF results as shown in Figure 1. It 
has shown that the form of the fall-off in the sensitivity at high 
spatial frequencies is independent of the temporal frequency 
and vice versa, while a fall-off in sensitivity at low spatial 
frequencies occurs only when the temporal frequency is also 
low and vice versa. Therefore, we would like to fit the similar 
shape at high spatial frequencies and the low spatial frequency 
with high temporal frequencies (larger than 10Hz). In [10], it 
has been revealed that the logarithm of the temporal contrast 
sensitivity values nearly follows the same slope for different 
spatial frequencies. And an empirical slope -0.03 is adopted. 
TCSF could be further modeled as: 

)(03.0))(log( 0ωωω TCSFTCSF tt +⋅−= , (2) 

where ωt is the temporal frequency, TCSF(ωt) denotes the 
contrast sensitivity value when temporal frequency is 0, 
which means that only spatial CSF is considered to generate 
the final contrast sensitivity value. As JND is the reciprocal 
of sensitivity value, the temporal modulation factor could be 
modeled as tω03.010− , and Equation (1) could be expressed as: 

tjinmTjinmkT spatio
ω03.010),,,(),,,,( −×= . (3) 

Also the TCSF curves in Figure 1 have shown the characteris-
tic of a bandpass filter at the lower spatial frequencies. Ac-
cording to Kelly’s model [13], the contrast sensitivity is nearly 
constant for the temporal frequencies less than 10Hz. There-
fore, an empirical formula for calculating temporal modulation 
factor, by accounting both spatial ωs and temporal frequency 
ωt, could be further derived as: 

B. Temporal Frequency Calculation 
Actually, the temporal frequency of a video signal depends 

on not only the motion information, but also the spatial fre-
quency of the object [17], which is demonstrated as: 

ysyxsxt vv ⋅+⋅= ωωω , (5) 
where ωsx  and ωsy are the horizontal and vertical component 
of the spatial frequency, respectively, which are determined 
for different transform sizes. Detailed information of the DCT 
spatial frequencies calculated for different transform sizes 
could be referred to [12]. vx and vy are retina velocities for 
depicting the object motion. By considering eye movement 
vEM and the object move information vI in image plane, the 
retina velocity [18] could be calculated according to: 

 
Figure 1.Temporal contrast sensitivity (reciprocal of threshold contrast) over 
different spatial frequency: 22 cpd (filled triangle), 16cpd (open triangle), 
4cpd (filled circle), 0.5cpd (open circle). 

 

),(__ yxvvv EMI =Δ−= ΔΔΔ . (6) 

And the eye movement velocity could be determined by: 

),(],min[ maxmin__ yxvvvGv IsEM =Δ+×= ΔΔ , (7) 

where Gs denotes the gain of the smooth pursuit eye move-
ments, vmin indicates the minimum eye velocity due to the drift 
movement, and vmax is the maximum eye velocity related to 
the saccadic eye movement, which are empirically set as 0.98, 
0.15 deg/s, 80 deg/s, respectively. And the velocity on image 
plane vI is generated by: 

),(_ yxMVfv rI =Δ××= ΔΔΔ θ , (8) 
where fr denotes the frame rate of the video sequence, MVΔ is 
the motion vector of the object, which could be approximated 
by the block-based motion estimation (BME). For different 
transform sizes, different size BMEs are employed to generate 
the velocity on image plane. θΔ is the visual angle, which 
could be generated by viewing distance d and the display 
width/height of a pixel Γ on the monitor: 

),())2(arctan(2 yxd =Δ⋅Γ⋅= ΔΔθ . (9) 

C. Balanced Strategy for JND Profile between Different 
Block-size Transforms 
In [12], A balanced strategy is proposed to adaptively ad-

just the image content to determine which transform block-
size is utilized to generate the final spatial JND profile. In 

order to extend the balanced strategy from spatial to temporal, 
we should consider not only spatial image content, but also the 
temporal video motion characteristics, which is approximately 
described by motion vectors of the objects, especially of dif-
ferent block sizes.  

The balanced strategy for video JND is illustrated in Fig-
ure 2, where two macroblocks A and C are taken as examples. 
Firstly, the spatial image content type of the macroblock and 
its corresponding sub-blocks should be determined and cate-
gorized into three types [12], namely PLANE, EDGE, and 
TEXTURE, respectively. From Figure 2, we can see that spa-
tial content types of the macroblock A and its sub-blocks ap-
pear the same, which are indicated by the same color. Howev-
er, the sub-block content types of C are different with each 
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Figure 2. Balance Strategy between 16×16 and 8×8 JND profiles for video 
(Dash arrow line denotes the motion information of macroblock (16×16), 
solid arrow line represents the motion information of sub-blocks (8×8).) 

 
other denoted in different colors. Therefore, A and C needs to 
be processed separately. Subsequently, BME is employed to 
depict the temporal motion characteristics of the objects. We 
further define a metric, named motion characteristics distance 
(MCD), to evaluate the similarity of the motion information 
between the macroblock and its corresponding sub-blocks: 
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where N denotes the number of sub-blocks of each macrob-
lock (in the proposed scheme, N=4 is employed, which means 
that four 8×8 sub-blocks compose the 16×16 macroblock), 
MV8_i and MV16_i indicate the motion vectors for 8×8 and 
16×16 block, respectively. Based on MCD, we could make 
decision on which size of transforms is employed for yielding 
the resulting JND profile. If the calculated MCD appears very 
small, which means that the motion characteristics of the ma-
croblock and its corresponding sub-blocks, such as A in Figure 
2, appear nearly the same as each other. Therefore, by consi-
dering the same spatial content type and similar temporal mo-
tion information, 16×16 DCT based JND profile will be uti-
lized to generate the JND threshold for A. However, if the 
obtained MCD appears very large, which indicates that motion 
vectors of the macroblock and its sub-blocks appear diversely, 
like C in Figure 2. The 4 sub-blocks of C are divided separate-
ly and move independently. Consequently, we could not re-
gard C as a unit for the different spatial image contents and 
diverse motion characteristics. 8×8 DCT based JND profile for 
each sub-block will be thereby employed to depict the result-
ing JND model. And we employ a hard thresholding scheme 
to describe the property of MCD. If MCD is smaller than a 
threshold Tthr, the macroblock is temporally regarded as a unit. 
On the contrary, if MCD is larger than Tthr, the macroblock 
should be divided into sub-blocks which are individually tem-
porally considered. Actually Tthr should be set adaptively ac-
cording to the content and motion information of the input 
video sequence. However, Tthr is empirically set as 1.25 in our 
implementation for simplicity, which means that the average 
tolerance of motion vector difference between the macroblock 
and its sub-blocks is no larger than 1.25 pixels. 

Actually, there also exist macroblocks of which the image 
content appears the same, while temporal motion will describe 
the sub-blocks individually, or the image content presents dif-
ferently, and the motion information regard it as a whole part. 
However, for the natural video sequences, if a macroblock is 

recognized as a unit with the same spatial image content, it 
will be very likely to appear as a whole part while considering 
the temporal motion characteristics. Also the sub-blocks with 
different spatial image contents will move separately and in-
dependently while accounting the temporal motion characte-
ristics Therefore, the macroblocks, of which the spatial and 
temporal information does not agree with each other, will oc-
cur in very small probability. Experimental results will illu-
strate this situation in Section III. 

III. EXPERIMENTAL RESULTS 
In order to demonstrate the efficiency of the proposed 

ABT-based JND model for videos, distortion is injected into 
each DCT coefficient of each video frame to evaluate the error 
tolerance ability of HVS according to: 

),,,,(),,,,(),,,,(ˆ
_),,,,( jinmkTRanjinmkIjinmkI typJNDjinmktyptyp ⋅+= , (11) 

where Îtyp is the noise-contaminated DCT coefficient which 
located on the (i,j)th subband of (m,n)th block in k frame, 
Ran(k,m,n,i,j) takes +1 or -1 randomly to avoid introducing a 
fixed pattern of changes, TJND_typ is the JND threshold obtained 
by the proposed ABT-based scheme, typ denotes the final 
transform block-size to generate the resulting JND profile. 

The proposed JND model is tested on several typical CIF 
(352×288) video sequences, with the frame rate as 30 fps. In 
our experiments, 250 frames of each sequence are tested, with 
the first frame as INTRA and the rest as INTER frames. We 
compare our method with Yang et al.’s method [9], which 
estimates the JND profile in pixel domain, and Wei et al.’s 
JND model [10] generated in DCT domain. Comparisons in 
terms of PNSR are listed in Table I. As we have evaluated the 
efficiency of ABT based JND model for images in [12], only 
the average PSNR of INTER frames is calculated to evaluate 
the efficiency of different JND profiles for videos. From Table 
I, it has been clearly shown that the proposed JND model 
could yield smaller PSNR values than other JND profiles, 
which means that our JND profile could tolerate more distor-
tions.  

Table I. PSNR Comparison between Different JND Profiles. 
Video Sequence Yang Wei Proposed Profile
TEMPETE 31.68dB 27.42dB 27.04dB
FOOTBALL 34.43dB 28.39dB 28.17dB
FOREMAN 35.29dB 28.29dB 28.02dB
MOBILE 33.10dB 27.48dB 26.93dB
SILENCE 34.43dB 28.26dB 27.93dB

In order to provide a more convincing evaluation of the 
proposed JND model, subjective test is conducted to assess the 
perceptual quality of the noise-contaminated videos. Double 
stimulus continuous quality scale (DSCQS) method, as speci-
fied in ITU-R BT.500 [19], is employed to evaluate the per-
ceptual quality. Two sequences are presented to viewers, of 
which one is original and the other is processed. Ten viewers 
(half of them are experts in image/video processing and the 
other half are not) are asked to offer their opinions. Mean opi-
nion score (MOS) is scaled for testers to vote: Bad (0-20), 
Poor (20-40), Fair (40-60), Good (60-80), and Excellent (80-
100). Then the difference between MOSes of original and 
noise-injected video sequence is calculated as the differential 
mean opinion score (DMOS). Therefore, the smaller the 
DMOS, the higher quality the noise-contaminated video 
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presents. In this experiment, the viewing monitor is a View-
sonic Professional series P225fb CRT display. The viewing 
distance is set as 4 times the image height. Detailed informa-
tion of the subjective test results is depicted in Table II. From 
the test results, we can see that average DMOS of the pro-
posed scheme is only 6.98, which means that the noise-
injected video sequences by our method have similar quality 
with the original videos. Therefore, our methods could effec-
tively exploit the HVS property. 

Table II. Subjective Evaluation Results (DMOS for Noise-
contaminated video Sequences at 30fps). 

Video Sequence Yang Wei Proposed Profile
TEMPETE 7.3 6.6 6.4
FOOTBALL 7.6 6.2 5.6
FOREMAN 13.2 9.2 8.3
MOBILE 9.7 7.0 7.1
SILENCE 13.9 8.7 7.5

In order to further test the consistency between the tem-
poral balanced strategy and spatial balanced strategy, firstly 
we need to examine the macroblock spatial content type ac-
cording to the balanced strategy proposed by [12]. Further-
more, we would like to record the motion characteristic type 
for each macroblock of INTER frames by the balanced strate-
gy presented in Section II C. Based on the obtained spatial and 
temporal macroblock type, a hit ratio (HR) curve is utilized to 
demonstrate the hit rate for each frame of the test video se-
quences. For each test INTER frame, the hit rate h indicates 
the percentage of the macroblocks whose types are consistent 
between spatial image content and temporal motion characte-
ristic, which means that both spatial and temporal balanced 
strategy select the same size DCT (8×8 or 16×16) for a ma-
croblock to generate the resulting JND model. The HR curves 
for each video sequence are illustrated in Figure 3. We can see 
that the hit rates of FOOTBALL and FOREMAN is a bit low-
er than the other sequences, with the average hit rate as 77%. 
That is because the two sequences both contain high motion 
characteristics. Therefore, the consistency between spatial and 
temporal characteristics seems a little loose. However, as the 
motion appears slightly, the hit rates of the other sequences are 
much higher, with the average hit rate of the other sequences 
as 93%. Furthermore, the hit rates h of different sequences 
mostly appear higher than 70%, which means that the pro-
posed temporal balanced strategy accords very well with for-
mer proposed spatial balanced strategy [12]. Also it means 
that the balanced strategy is efficient and meaningful for de-
picting both spatial image content and temporal video motion 
characteristics. 

IV. CONCLUSION 
In this paper, a novel ABT-based JND profile for videos is 

proposed by exploiting the HVS properties over different 
transform sizes. A new balanced strategy is proposed for each 
macroblock to decide which transform block-size is to be em-
ployed by considering not only spatial image content but also 
temporal video motion characteristics. Based on the proposed 
model, our JND profile could tolerate more distortions with 
the same visual quality compared with other JND models, 
which means that our model is more effective in exploiting the 
HVS properties. 

 
Figure 3. The HR curves of the macroblocks for each INTER frame of 
different test video sequences. 
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