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ABSTRACT 

In this paper, we propose a full reference Video Quality As-
sessment (VQA) algorithm based on the Adaptive Block-
size Transform Just-Noticeable Difference (ABT-JND) 
model. Firstly, ABT-JND is introduced for its efficiency of 
modeling the Human Vision System (HVS) characteristics. 
Based on the ABT-JND model, the full reference VQA is 
developed, by capturing HVS responses of spatio-temporal 
distortions over different block-size transforms. Experimen-
tal results have demonstrated that the proposed VQA outper-
forms other VQA methods, while slightly poorer than 
MOVIE. However, it maintains a very simple formulation. 
Since the proposed VQA performs on transform domain, it 
could be easily applied on many related applications, such as 
video compression, watermarking, and so on. 

Index Terms— Video Quality Assessment (VQA), 
Adaptive Block-size Transform (ABT), Just-Noticeable Dif-
ference (JND), Human Vision System (HVS) 

1. INTRODUCTION 

Video quality control plays a very important role in many 
networked video applications, such as video compression, 
video on demand, digital television, video teleconferencing, 
and streaming video over the Internet, etc. Humans can, al-
most instantaneously, judge the quality of an image or video 
based on the prior knowledge they have learnt through view-
ing millions of images/videos during their daily life. There-
fore, one straightforward way for video quality assessment is 
the subjective testing, which requires that humans provide 
their opinions of the image/video quality. However, it is very 
time-consuming and expensive, which makes it impractical 
for video applications. These drawbacks lead to the devel-
opment of video quality metrics which can automatically 
evaluate the video perceptual quality. 

The simplest and most popularly used video quality me-
tric is the Mean Squared Error (MSE) and related measures 
such as Peak Signal-to-Noise Ratio (PSNR), mostly due to 
their simple formulations, clear physical meanings and easy 
mathematical optimizations. However, it is well known that 
the MSE and PSNR do not correlate very well with visual 
quality [1]. That is why a great deal of efforts has been made 
to develop objective image and video quality metrics, which 

incorporate HVS perceptual characteristics. In [2]-[4], JND 
model is employed to evaluate image/video quality by con-
sidering visual contrast sensitivity, luminance adaptation, 
and video temporal characteristics. Recently, VQA tech-
niques attempted to characterize the features that HVS may 
associate with loss of quality, such as blurring, blocking, 
sharpness and so on. The most popular Image Quality As-
sessment (IQA) and VQA algorithms that embody this ap-
proach include Structural SIMilarity (SSIM) index [5]-[7], 
Visual Information Fidelity (VIF) [9], and Video Quality 
Metric (VQM) [8]. SSIM tries to capture the structure in-
formation loss to depict the distorted image quality. VIF 
employs the mutual information between the original and 
test image to evaluate the image quality. As SSIM and VIF 
perform on images, we can extend them to videos by apply-
ing them frame-by-frame, and the video quality index is ob-
tained by averaging the frame level quality scores. Due to 
this strategy, SSIM and VIF fail to capture the temporal dis-
tortions between adjacent video frames. VQM, which has 
been adopted by the American National Standards Institute 
(ANSI) as a national standard for its excellent performance, 
analyzes 3D spatio-temporal blocks of the video sequence in 
order to extract the salient features, and the feature differ-
ences are employed to generate the video quality index. 
However, only the frame differences are involved in the 
VQM temporal component, which is too simple to depict the 
HVS temporal property. In order to integrate the explicit 
motion information, MOtion-based Video Integrity Evalua-
tion index (MOVIE) [10] is proposed by tracking percep-
tually relevant distortions along motion trajectories, thus 
augmenting the measurement of spatial artifacts in videos. 
However, it emphasizes on the spatial and motion distortions, 
while ignores the HVS responses of the distortions. Moreo-
ver, it is very complicated for practical applications. 

Recently, ABT-JND [11] for videos has shown its po-
tential for modeling the HVS characteristics by not only 
considering the motion information of object and eye 
movement, but also accounting the temporal contrast sensi-
tivity function (CSF). Furthermore, ABT-JND characterizes 
the HVS properties over different block-size transforms. 
Therefore, by incorporating the ABT-JND model into VQA 
algorithm, a good performance could be expected, for its 
accurate model of the HVS property. 
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In this paper, a novel VQA based on ABT-JND is pro-
posed to assess video quality by exploiting HVS characteris-
tics of the spatio-temporal distortions over different block-
size transforms. Firstly, ABT-JND model is applied on the 
original video sequence to generate its JND map and the 
corresponding macroblock type. Secondly, by referring to 
the obtained macroblock type, the differential frames be-
tween original and the distorted ones are transformed from 
spatial to frequency domain, specifically (Discrete Cosine 
Transform) DCT domain, by using different block-size 
DCTs. Then the frame-level quality score is obtained by 
accumulating the HVS responses of distortions based on the 
ABT-JND map. Finally, the video quality index is obtained 
by averaging the frame-level scores. 

The rest of the paper is organized as follows. In Section 
2, the ABT-JND model for videos is described. Our pro-
posed VQA is introduced in Section 3. And experimental 
results are demonstrated in Section 4. Finally, Section 5 
concludes the paper. 

2. ABT-JND MODEL FOR VIDEO 

Video JND profile in the DCT domain could be determined 
by considering both spatial JND profile Tspatio and temporal 
modulation factor Ttempo, which is defined as: 

),,,,,(),,,,(),,,,,( jinmtypfTjinmtypTjinmtypfT tempospatio
, (1) 

where f denotes the frame index of the video sequence, (m,n) 
is the position of macroblock in the current frame, (i,j) indi-
cates the DCT subband, typ denotes the final transform size 
to generate the resulting JND map T for each corresponding 
frame. As in [2] [12], the spatial JND profile Tspatio is deter-
mined by a basic visibility threshold Tbasic generated from 
the spatial CSF, the luminance adaptation αlum and contrast 
masking αcm: 

),,,,(),,(),,(),,,,( jinmtypnmtypjitypTjinmtypT cmlumbasicspatio . (2) 
Furthermore, the temporal modulation factor Ttempo could be 
derived by considering the temporal CSF [11] [12], which is 
the function of temporal frequencies. From [13], the tempor-
al frequency of a video signal depends on not only the object 
motion information, but also its spatial frequency.  

In the developed ABT-JND model [11], the motion in-
formation of the object is approximated by the Block-based 
Motion Estimation (BME). Therefore, during the derivation 
of ABT-JND model for videos, the temporal information has 
been considered, as well as the spatial information. And the 
block-level BME could efficiently depict the temporal mo-
tion information, which appears much more accurately than 
the frame differences employed in VQM. Furthermore, as 
shown in [11], HVS performs differently over different 
block-size DCTs. Specifically, larger block-size DCTs could 
provide better energy compaction and better preservation of 
details, while smaller ones could prevent more ringing arti-
facts during compression [14]. By introducing ABT-JND 
into VQA, HVS responses of the distortions could be accu-
rately modeled, which will result in a better performance. 
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Figure 1. Proposed VQA framework based on ABT-JND. 

3. PROPOSED ABT-JND BASED VQA 

The framework of ABT-JND based VQA is illustrated in 
Figure 1, which comprises several components: the original 
video sequence in block A, the distorted video sequence in 
block B, the differential video sequence in block D, and the 
JND maps generated from the original video sequence in 
block C for depicting HVS characteristics. 

The video frames in the block A are the original ones 
without any distortions. Based on the original video se-
quence, HVS property of perceiving the sequence is mod-
eled by ABT-JND, according to (1), which generates the 
corresponding JND map sequence in the block C, with con-
sideration of both spatial and temporal HVS property. The 
distorted frames in the block B are generated by typical vid-
eo distortions, such as: compression, transmission and so on. 
Then by referring to the original video sequence, the diffe-
rential frames in block D are obtained by simply subtracting 
the distorted ones from the original ones, which is defined as: 

)()()( fIfOfD distriist , (3) 
where Dist(f) is the f-th differential image between the origi-
nal frame Ori(f) and the test distorted frame Idist(f), which are 
illustrated in Figure 2 (a) and (b). Moreover, according to 
the ABT-JND model introduced in Section 2, the JND map 
T(typ,f,m,n,i,j) for the f-th original frame is also generated, 
by considering the local spatial content information, tempor-
al motion characteristics, and different block-size DCTs 
[11] ,which is shown in Figure 2 (c). From the obtained JND 
map, we can see that all the sub-blocks (8×8) with the same 
content and similar movement are regarded as a unit, which 
employs 16×16 DCT-based JND model. However, the sub-
blocks with diverse contents and irregular movement are 
processed individually, which means that 8×8 DCT-based 
JND model is utilized for each sub-block. As ABT-JND 
model generated in frequency domain tends to depict HVS
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Figure 2. Processing results of the proposed VQA (Taking the 31-th frame of PA sequence in LIVE database as an example. 
(d) and (e) have been enhanced for better visualization with the identical processing).  
responses of different frequency components, the differential 
frames are transformed to DCT domain, by referring to the 
block-size information obtained during the ABT-JND model 
derivation, which is depicted in Figure 2 (d). We can see 
that some regions, highlighted by red ellipses, represent 
larger absolute differences. However, HVS may not be sen-
sitive to these differences compared with the others. Conse-
quently, ABT-JND is employed to model HVS responses for 
masking the corresponding distortions, which is defined ac-
cording to: 

),,,,,(
),,,,,(

),,,,,(
jinmtypfT

jinmtypfDCT
jinmtypfP dist

typdist
, (4) 

where DCTdist denotes the coefficient generated from Dist(f) 
according to different block-size DCTs, which are consistent 
with the ones for obtaining ABT-JND model. And the ad-
justable parameter τtyp is introduced according to the differ-
ent energy compaction and detailed information preservation 
properties of different block-size DCTs. Therefore, HVS 
responses of the distortions are approximately generated 
based upon the simple weighting function in (4), which is 
illustrated in Figure 2 (e). The image appears quite different-
ly with Figure 2 (d), especially the part denoted by the red 
ellipses, which could more accurately depict the sensitive 
distortion that HVS perceived. Therefore, based on the HVS 
perceived distortion, a more convincing video quality metric 
can be derived. 

As the video sequence is displayed and processed 
frame-by-frame, one frame quality score will be generated 
for each distorted frame, as shown in Figure 1. Since the 
HVS responses Pdist have been generated, a simple formula-
tion like PSNR is employed for accumulating the HVS res-
ponses to generate the frame quality score, which is defined 
as: 

))((log10)(

),,,,,()(
2
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2
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p

jinmtyp dist , (5) 

where P is the accumulated perceptual distortion which re-
lates with the HVS responses, and MAX denotes the maxi-
mum HVS response of the distortion, which is always set as 
a constant for simplicity. As the quality score for each frame 
Indexp has been generated according to (5), the Video Quali-
ty Index (VQI) of the specific distorted sequence is obtained 
by pooling all the frame quality scores together. In our im-

plementation, the averaging process is employed to generate 
the VQI for simplicity: 

NfIndexVQI N
f p1 )( , (6) 

where N is the total frame number of the video sequence. 
According to the definition of VQI, the higher the VQI, the 
better visual quality of the distorted sequence. And the VQI 
for the original sequence is infinite according to its defini-
tion. 

4. EXPERIMENTAL RESULTS 

In this section, we compare the performance of the proposed 
VQA method with the other VQA methods, i.e., PSNR, 
SSIM [6], Multi-scale SSIM (MSSIM) [7], VIF [9], VQM 
[8], and MOVIE [10]. We test all of the VQA methods on 
the LIVE video quality database [15] [16], which contains 
150 distorted videos (obtained from 10 uncompressed refer-
ence videos of natural scenes). The distorted videos are 
created using four different commonly encountered distor-
tion types, including MPEG-2 compression, H.264 compres-
sion, wireless distortions, and IP distortions. And each video 
sequence is evaluated by 38 human subjects for providing 
the Difference Mean Opinion Scores (DMOS). 

In order to remove the nonlinearity, which is introduced 
by the subjective rating process, and to further facilitate em-
pirical comparisons of different VQA methods, we follow 
the performance evaluation procedure employed in the Vid-
eo Quality Experts Group (VQEG) HDTV test [17] and that 
in [18]. Let xj represents the quality index that a VQA algo-
rithm predicts for the j-th video sequence. A five parameter 
monotonic logistic function was employed for nonlinearly 
regression: 

))exp(1(121),(log

))(,(log 54321

xxistic

xxisticVQI jjj . (7) 

After the nonlinearly mapping, the Pearson Linear Correla-
tion Coefficients (LCC) between the objective and subjec-
tive scores, which measures the prediction accuracy, and 
Spearman Rank-Order Correlation Coefficients (SROCC), 
which measures the prediction monotonicity of the objective 
model prediction with respect to subjective scores, are em-
ployed to evaluate different IQA performances. Also the 
Root Mean Square prediction Error (RMSE) of the fitting 
procedure is also utilized to measure the VQAs’ efficiency. 
According to the definitions, larger LCC and SROCC values 
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1 LCC and SROCC values of MOVIE are obtained directly from [15], 
which does not provide the RMSE value. 

mean that the objective and subjective scores correlate better, 
and smaller RMSE indicates a better performance. 

Table I. Performance comparisons between different VQAs. 

VQA Methods LCC SROCC RMSE 
PSNR 0.5398 0.5234 9.241 
SSIM 0.4999 0.5247 9.507 
MSSIM 0.6754 0.7329 8.095 
VIF 0.5735 0.5564 8.992 
VQM 0.7160 0.7029 7.664 
MOVIE1 0.8116 0.7890 - 
Proposed 0.7627 0.7372 7.099 

Detailed VQA comparison results are listed in Table I, 
which has shown that the proposed VQA outperforms the 
other VQA methods with larger LCC and SROCC values, 
and smaller RMSE value, while slightly poorer than MOVIE. 
Furthermore, the scatter-plots of different VQAs are shown 
in Figure 3. Intuitively, we can find that the spots of the pro-
posed VQA scatter more closely around the fitted line than 
the other VQAs, which indicates a better performance of our 
method. Actually, although VIF and SSIM could perfectly 
depict the image visual quality, they fail to capture HVS 
responses of the temporal distortions, which lead to the poor 
performances. For VQM has considered temporal effect, it 
outperforms the typical IQAs, such as SSIM, PSNR, VIF. 
However, the temporal effect is just simply modeled by 
frame differences. Therefore, it could not efficiently depict 
the temporal distortions, which leads to a slight poor result. 
MOVIE is developed by considering the complex temporal 
and spatial distortion, which makes it perform the best. 
However, it is very complex and time-consuming. For each 
distorted sequence, the quality evaluation will take several 
hours, which is impractical for applications. As our pro-
posed VQA has modeled the temporal HVS property as well 
as the spatial property, it provides a good performance. 
However, as ABT-JND is generated based on original se-
quence, it could be obtained offline. Therefore during video 
applications, simple weighting and summing computations 
are just employed to evaluate the test distorted video quality. 

5. CONCLUSION 

In this paper, we present a simple yet efficient VQA me-
thod, which considers not only the spatial and temporal HVS 
properties, but also the HVS responses over different block-
size transforms. With evaluation on LIVE video subjective 
database, our proposed method outperforms other VQAs, 
while slightly poorer than MOVIE. Due to its simplicity, the 
proposed VQA could be easily applied on HVS-related vid-
eo processing, such as video coding, video restoration and 
so on. 
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