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Section I11. The metric performance is compared in Section IV.
The corresponding perceptual coding scheme is proposed in
Section V, followed by the conclusion.

Il. RELATED WORKS

Image quality metrics can be classified from different view-
points into: metrics designed by psychophysical approach and
by engineering approach [17], error sensitivity and structural
sensitivity metrics [18], and bottom-up and top-down metrics
[16].

Among the existing metrics, many HVS properties are taken
into account or implicitly considered. One of them is the tex-
ture masking effect. Masking effect refers to the reduction of the
visibility of image distortion due to the presence of the original
content of the reference image [16]. In general, the distortion
is less visible where the reference image region presents rough
texture. Therefore, texture masking is also termed as contrast
masking [16] or noise visibility function (NVF) [19] in the wa-
termarking community. Strictly speaking, texture masking can
be divided into intra-band masking and inter-band masking [20].
Intra-band masking refers to the error tolerance due to the orig-
inal content in the subband itself, while inter-band masking in-
volves multiple subbands and is affected by their difference in
phase, orientation, spatial frequency, and intensity. Since it re-
quires setting a host of parameters to precisely model the texture
masking, we turn to an approximate model based on local vari-
ances in this study.

Human sensitivity to sine-wave grating in luminance has a
classic inverted-U shape, namely contrast sensitivity function
(CSF). The psychophysical experiments that underlie many
CSF models are to estimate the threshold at which a stimulus
is just visible. At the suprathreshold level, traditional findings
report that apparent contrast of sine-wave grating is relatively
independent of spatial frequency, i.e., the phenomenon termed
“contrast constancy” [21]. A recent study yet reported that
suprathreshold CSF is still of an inverted-U shape as a function
of frequency [22]. Existing HVS-based metrics [23], [24] often
regard the CSF at threshold level as human sensitivity to image
difference and use them to weigh the subbands’ distortions,
which sometimes are of suprathreshold. With this gap in mind,
this paper refines the shape of suprathreshold CSF according
to subjective databases. With the modified CSF, the quality
measure keeps more consistent with subjective evaluations as
explained in Section IV-A.

Many other HVS properties have also been exploited, such as
light adaption (luminance masking) [23], perceptual color space
[25], visual attention (region of interest) [26], etc. Each indi-
vidual effect is supported by visual psychological experiments.
However, whether or not their influences on visual quality mea-
sure are significant remains debated.

The above-mentioned HVS properties can be modeled by
only the information of the reference image. Recently, the fea-
tures of both the reference and the distorted images are em-
ployed for image quality measure to improve the metric accu-
racy, including the singular vector of images [27], the statistical
moments on the Log-Gabor filter responses of images [28], and
mutual information [29]. However, these metrics are difficult to
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optimize since they are nonlinearly dependent of the distorted
image (i.e., the processed image).

In this study, five typical metrics are compared whose codes
are publicly available: 1) MSE and DCTune [23], [30], which
are commonly used for perceptual coding and watermarking; 2)
MSSIM (the multi-scale version of SSIM [18]) and VIF [31],
which exhibit an outstanding performance in previous study
[32]; 3) PSNR-HVS-M [33] and VSNR [24], which are de-
signed based on the databases [4] and [5], respectively, and per-
forms quite well on them.

Among all the metrics above, PSNR-HVS-M and DCTune
are quite similar to the proposed metric, but their models of the
CSF and the texture masking are different from the proposed
one. More than a quality metric, DCTune was originally de-
veloped for optimizing JPEG image compression. We will also
compare it with our perceptual coding method.

I1l. PROPOSED DCTEX METRIC

The proposed metric is based on a key assumption that the
signal error in each subband and each local region contributes
to the entire distortion independently. Although over-simplistic,
this assumption is still reasonable since most typical distortions
have few (linear) correlation both between the subbands and
between the neighborhoods at large spatial scales. On the other
hand, the subband error and the local error contribute to the
entire distortion unequally due to the CSF and the texture
masking effect, respectively. Therefore, we propose a quality
metric named as DCTex with the following definition:

"o - (up — v )
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In this paper, X and Y represent the reference and the dis-
torted images, respectively. Both images are divided into 8 x 8
non-overlapping blocks, denoted by and v, respectively. The
images are supposed to have a total number of  blocks, and 7 in-
dexes the variables associated with eachblock (i =1 2 ... ).
u;,and v; is the jth DCT coefficient of the block ; and y;,
respectively. 7 indexes the variables associated with each DCT
subband (j =1 2 ... 64). The scores provided by the metric
are further normalized by the number of image pixels, since the
image resolutions may not be identical.

The DCTex metric combines the texture masking and the
CSF. g and [; are two types of texture masking parameters. g,
named as global smoothness, is quantified by

ar(7)
9= n(X) )
where the denominator is the luminance variance of the whole
image and the numerator is the variance of the block luminance
means:

n n —_ 2
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In (3), —; is the block mean of block ¢. Global smoothness affects
the overall distortion visibility of an image. Let us demonstrate
the case of 1-D signal in Fig. 1. The left figure in Fig. 1 is a
descending staircase signal with two smooth steps and the right
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Fig. 1. Global smoothness of 1-D signals. Left: 1; right: 0.05. Window width

1.00 0.405 | 0.162 | 0.0647 | 0.0256 [ 0.0101 | 0.0040 [ 0.0016
0.405 | 0.278 | 0.131 | 0.0557 | 0.0229 | 0.0092 [ 0.0037 | 0.0014
0.162 | 0.131 | 0.0758 | 0.0370 [ 0.0165 | 0.0071 [ 0.0029 | 0.0012
0.0647 [ 0.0557 | 0.0370 | 0.0205 | 0.0101 | 0.0046 | 0.0020 [ 0.0009
0.0256 | 0.0229 | 0.0165 | 0.0101 | 0.0055 | 0.0027 [ 0.0013 | 0.0006
0.0101 | 0.0092 | 0.0071 | 0.0046 | 0.0027 | 0.0014 [ 0.0007 | 0.0003
0.040 [ 0.0037 | 0.0029 | 0.0020 | 0.0013 | 0.0007 | 0.0004 [ 0.0002
0.016 | 0.0014 | 0.0012 | 0.0009 [ 0.0006 | 0.0003 | 0.0002 | 0.0001

Fig. 2. Proposed mCSF, { ;}, associated with 8 x 8 DCT coefficients.

figure is a sawtooth signal. The left signal looks smoother in
a local scale than the right signal, despite its larger variance in
overall. This is confirmed by the global smoothness with respect
to awindow width of 5: the left signal has a global smoothness of
1 and the right signal of 0.05. Similarly, images full of textures
have the lower global smoothness and thus can tolerate more
distortions than smooth images.

The other texture masking parameter, /;, is called local rough-
ness, since it is calculated block by block as

l; = (i=12-- ) (4
where ar( ;) is the luminance variance in block :. Parameter e
in (4) controls the relative deviation of the local roughness. The
larger the parameter, the smaller is the relative deviation of the
local roughness and thus the weaker texture masking effect is
simulated. With ¢, dividing by zero in (1) is also avoided. The
metric performance is not sensitive to this parameter and we
set £ as 20 empirically for 8-bit images. More details about the
global smoothness and the local roughness can be found in our
previous work [34].

The DCTex metric employs a modified CSF (mCSF) asso-
ciated with the DCT. Although CSF can be modeled for many
spatial-frequency transforms, (e.g., wavelet in [24] and [35]),
it is reported that the types of the spatial-frequency transforms
are not of paramount importance [25], [36]. This paper selects
the DCT domain so as to adapt to the wide DCT-based image
applications. ThemCSF, {¢ (5 =1 2 ... 64), whichis nor-
malized by ¢y, is shown in Fig. 2. How we obtain the mCSF will
be explained in Section 1V-C. The high-frequency components
of mCSF are tiny in comparison with the CSF at the threshold
level [37], [38]. As a result, the distortions in high-frequency
subbands have very low weights and can be ignored.

The modified mMCSF has a steeper slope with respect to
the frequency than the traditional CSF at the just noticeable
level (e.g., Watson’s CSF). Our CSF leads to the performance

ar( ;) €
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improvement as demonstrated in Section IV. This may be
attributed to the fact that Watson’s CSF indicates the human
sensitivity to distortion at the threshold level, while our mCSF
is able to capture the human sensitivity to distortion at both
the threshold and supra-threshold level. Another reason is
that: in most of the typical distortions, the high-frequency
distortions are always bounded by their intrinsic spectra (e.g.,
often conforming to the 1 f power law), so it will not affect
the performance even when they are ignored.

IV. METRIC PERFORMANCE

A. Performance Comparison

It is important to make sure that the proposed metric works
well before applying it. This section is dedicated to comparing
the proposed metric with the state-of-the-art metrics on di-
verse distortions. All kinds of distortions in existing subjective
databases are taken into account for a comprehensive justifi-
cation. The performances of the metrics are evaluated by the
correlation between the two groups of scores which indicate
the quality of distorted images in the subjective databases. One
group is the objective scores predicted by the metrics and the
other is the subjective scores rated by the subjects. Correlation
of Spearman rank order correlation coefficient (SROCC) is
used to assess prediction monotonicity [39]:

62]\/[:1 d2

SROCC =1 MM = 1) (5)
where d is the difference between the th image’s rank in
subjective and its objective score. SROCC is independent of a
monotonic regression between the subjective and the objective
scores. A higher SROCC score indicates a better performance
for ametric. The best SROCC of 1 will occur when the objective
scores is the perfect monotonic function of the subjective ones.
From the view point of practicality, we compare MSE, DC-
Tune, MSSIM, PSNR-HVS-M, VSNR, VIF, and the proposed
metrics on the distortion subsets below. 1) Table I, JPEG and
JPEG 2000. These two distortion types are covered by all the
databases except WIQ, and represent the most typical coding
artifacts. 2) Table 11, additive Gaussian noise and Gaussian blur.
They also commonly occur and are contained in most databases
except Toyama, IVC, and WIQ. 3) Table IllI, transmission error.
It is simulated by LIVE, TID, and WIQ. Note that two sepa-
rate sessions were conducted in WIQ, and thus, we use them
as two different test sets. 4) Table IV, combinations of all the
distortions except the three types of “difficult” distortions. 5)
Table V, the “difficult” distortions including “local block-wise
distortions of different intensity” and “mean shift” in TID, as
well as “contrast change” in TID and CSIQ. We isolate the
three “difficult” distortions because not only our metric but also
PSNR-HVS-M, VSNR, and DCTune perform poorly on them,
and even worse than MSE does. All above metrics only con-
sider the luminance information of images. For each dataset, we
highlight the best two results with boldface. We have two major

observations based on the results shown in Tables I-1V.
First, the proposed Gray DCTex, as a weighted MSE, converts
the MSE into a quite competitive metric for the most typical
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TABLE |
METRIC SROCC ON DISTORTION SUBSET OF JPEG AND JPEG2000 COMPRESSION
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TABLE 11
METRIC SROCC ON DISTORTION SUBSET OF ADDITIVE GAUSSIAN WHITE NOISE AND GAUSSIAN BLUR
Number PSNR- Gray Color
of images MSE MSSIM VIF HVS-M VSNR DCTune DCTex M1 M2 M3 DCTex
LIVE 290 0915 0.960 0.977 0.953 0.733 0.926 0.968 0.933 0.942 0.955 0.963
TID 200 0.903 0.799 0.922 0.922 0.888 0.883 0.891 0.863 0.857 0.928 0.892
A57 18 0.572 0.661 0.854 0.820 0.905 0.636 0.733 0.564 0.558 0.826 -
CSIQ 300 0.941 0.946 0.969 0.962 0.922 0.893 0.954 0.953 0.951 0.961 0.954
TABLE 111
METRIC SROCC ON TRANSMISSION ERROR
TABLE IV
METRIC SROCC ON DATASET EXCLUDING “DIFFICULT” DISTORTIONS
Number PSNR- Gray- Color
of images MSE MSSIM VIF HVS-M VSNR | DCTune DCTex Ml M2 M3 DCTex
LIVE (full set) 779 0.856 0.945 0.964 0.930 0.648 0.872 0.951 0.900 0913 0.937 0.940
IVC (full set) 185 0.679 0.885 0.896 0.883 0.799 0.715 0.921 0.722 0.774 0.904 0.931
TID 1~14 1400 0.740 0.866 0.864 0.830 0.793 0.664 0.857 0.791 0.787 0.850 0.861
AS57 (Full set) 54 0.570 0.839 0.622 0.896 0.935 0.773 0.851 0.630 0.672 0.896 -
CSIQ 1~5 750 0.906 0.950 0.928 0.948 0.930 0.870 0.941 0.923 0.927 0.946 0.931
LAR (Full set) 120 0.819 0.886 0.916 0.907 0.863 0.834 0.921 0.860 0.874 0.921 0.923

distortions. Actually, the performance of Gray DCTex is often
comparable to many state-of-the-art algorithms in Column 3 ~
9 of Tables I-IV.

Second, Gray DCTex fails to predict the difficult distortions
as shown in Table V. The distortions of “mean shift” and “con-
trast change” do not change the structural information of im-
ages, so they are not that annoying. The metrics that measure
the signal difference between the reference and the distorted
image often cannot tolerate such distortions VIF, which evalu-
ates the statistical difference of image variance, can tackle “con-
trast change”. SSIM, which evaluates the similarity of image
mean and image variance separately, can handle both “mean
shift” and “contrast change”. In fact, “mean shift” causes few
distortions in AC subbands and “contrast change” changes every
AC subband at the same rate, so a host of weights to AC subband
distortions (e.g., CSF) will not influence the final image quality
and thus will not improve the metric performance. Another dif-
ficult distortion, “Local block-wise distortions of different in-
tensity”, overlays smooth patches on the images [4]. It seems
that such artifacts do not affect the perceptual quality of smooth
images but the images full of texture. This effect conflicts with

what we assume about the global smoothness—textural images
are more likely to hide distortions than the smooth images. It is
also reported that “Local block-wise distortions of different in-
tensity” is difficult to handle due to its “nonuniform distortion”
[28]. This distortion may challenge a smarter pooling strategy
in line with cognitive theory. Luckily, those “difficult” distor-
tions seldom happen in the applications such as image coding.
Therefore, DCTex is still practical and reliable for the most typ-
ical distortions.

B. Factor Analysis

Gray DCTex takes account of the CSF and the texture
masking effect. To identify the contribution of each effect
model to the metric performance, we compare three candidate
metrics in Tables I-V (Column 9 ~ 12):

e M1) with the local roughness

n

e (i, )’
DXY)=> > T

=1 =1

(6)
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complex nonlinear models. Finally, we choose ¢ = 10 and
as = 1; this configuration results in the CSF shown in Fig. 2.

D. Color DCTex

The gray DCTex metric can be extended for chromatic chan-
nels so as to guide the applications of color images. The color
DCTex metric takes account of both the luminance channel and
the chromatic channels as

D) =g3 Syt o0
k=1 ‘

=1 =1

(16)

A color image (e.g., RGB) is firstly transformed into a
K -channel color space. In each channel , the distortion is
predicted by the luminance DCTex. After being weighted by
qr., the channel distortions are pooled. The texture masking
parameters g and [ for chromatic channels are still calculated
from the corresponding luminance information.

In JPEG standard, color images are transformed to YUV
space and the U and V components are often 1:2 down-sampled
before frequency transform. Here, we give an instance of color
DCTex, which adapts to the JPEG standard by that: 1) YUV
space is used, indexed by =1, 2, 3, respectively; 2) the U and
V components are 1:2 down-sampled; 3) the local roughness
[ for U and V channels is calculated from the corresponding
down-sampled bock in Y channel; 4) the chromatic CSF for
U and V channel is learned from subjective databases. At a
common viewing distance, AC subbands of the 8 x 8 DCT on
a downscaled 16 x 16 block usually present about 1.18 ~ 11.7
cyc/deg, at which spatial frequency human sensitivity to the
red-green and blue-yellow channels show a low-pass property
[42]. We use the same a in (13) for chromatic channels and
Y channel, and only estimate a5 in (13) and ¢ in (16) for
chromatic channels. Moreover, we use the identical ¢, a , and
as for U and Y channels. Given ¢ = 1 for Y channel, we finally
select ¢ = 0.8 and a5 = 1.5 for U and V channels, such that
the performance of color DCTex metric is improved over that
of luminance DCTex metric for most of the datasets.

Color DCTex’s performance is shown in Column 13 of
Tables 1-V. The color DCTex does not always outperform
the gray DCTex, yet also provides a consistent performance.
Note that IVC database contains the compression in chromatic
components, TID covers the additive chromatic noise, and
CSIQ includes the additive pink noise; gray DCTex still does
well in those chromatic distortions. This is probably another
proof to the observation that perceptual color space is not a key
factor for measuring the typical distortions [25].

E. Complexity Analysis

The DCTex metric is fast, since it is based on the orthogonal
transform (DCT) on non-overlapping blocks at single scale,
involving much less information than the case of overcom-
plete transform, overlapping blocks, or multi-scale analysis.
DCTex metric can be embedded into the objective function
of an optimization problem and keep the objective easy to be
optimized. Note that DCTex is a weighted Euclidean distance
in the DCT domain and the pixel domain. Given the reference
images, there is a closed form of the gradient-descent solution
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to shorten the DCTex distance from the processed image to the
reference. Therefore, DCTex metric is able to function in loop
during optimization and ensures a fast solution. Comparatively
speaking, DCTune is more complex to optimize due to its 4th
order norm.

Another advantage of DCTex is that it decouples the image
distortions into each block and each DCT subband. This as-
sumption seems to be over-simplistic, but practical indeed. To
be specific, it is reasonable to optimize the quantizer for each
DCT subband one by one for image coding (as discussed in
Section V). But for a metric which measures local distortions
on overlapping blocks, the distortion in separated blocks (e.g.,
changing the DCT coefficient in two adjacent blocks) might af-
fect the quality in a dependent way. Similarly, for a metric which
measures the subband distortions on overcomplete transform
domain, two modifications to different subbands (e.g., to modify
two DCT coefficients of the same block) might influence the
quality jointly. As a result, we have to optimize coding parame-
ters (e.g., quantizers) together rather than one by one. Actually,
minimization of SSIM in the coding scenario is nontrivial [43].
To the best of our knowledge, no literature has discussed how to
optimize MSSIM and VIF. This issue will be further discussed
in Section V-C.

V. APPLICATION IN PERCEPTUAL CODING

A. Perceptual Coding Scheme

The DCTex metric is employed to improve JPEG image
coding by means of a better rate-distortion (RD) optimization
which would be more consistent with subjective evaluation
than the traditional rate-MSE optimization. To minimize the
RD function, the perceptual coding scheme optimizes the
quantization table for the entire image and the quantizers for
the transform blocks. Since JPEG has reserved bits to store
user-configured quantization tables and the quantizer parame-
ters can be recovered at the decoder, there is no extra overhead
to transmit.

The RD objective function is the linear combination of the
number of the bits B to code the image and the distortion D
measured by DCTex, defined as

R=B D. 17)

The positive multiplier is chosen based on the theoretical
rate-distortion curve of the image. We try to code the image
several times with slightly different parameters to get several
combinations of {(B; D;) where ¢ indexes the ¢th trial, and
set to be equal to the slope of the normal to the distortion
versus rate curve at the desired operating point:

AB

:_—:—argn;?i‘r ; By — Dt—Tz. (18)
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In (18), ( 7) can be regarded as the polynomial parameters to
fit the linear regression of B, = - D; 7. Thatis,1 indi-
cates the tangent direction of the local RD curve, and  for the
normal direction we are seeking. This way, the RD minimiza-
tion is made along the normal of the current RD curve.

The RD minimization is carried out in two steps. The first step
is searching for the optimal quantization table, and the second
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